
Automated Planning with Modern Heuristics

Raquel Fuentetaja

Escuela de Verano de Inteligencia Artificial – EVIA 2025

July 11, 2025

Planning and Learning Group (PLG)

Universidad Carlos III de Madrid

Some slides based on slides from the AI groups at the Universities of Basel and Linköping

1



Overview

• Very short introduction to Automated Planning

• Intuition behind one of the most relevant heuristics for Classical Planning

2



General perspective on planning

“Planning is the art of thinking before acting” —P. Haslum

3



Examples

4



Model-based vs. data-driven approaches

Model-based approaches now the “inners working” of the

world ; Reasoning

Data-driven approaches rely on collected data from a

black-box world ; Learning

5



General Problem Solving

Wikipedia: General Problem Solver

General Problem Solver (GPS) was a computer program created in 1959

by Herbert Simon, J.C. Shaw, and Allen Newell intended to work as a

universal problem solver machine.

Any formalized symbolic problem can be solved, in principle, by GPS.

[...]

GPS was the first computer program which separated its knowledge of

problems ... from its strategy of how to solve problems (a generic solver

engine).
H. Simon & A. Newell. Carnegie Mellon University Libraries

Now we call this Domain-Independent Automated Planning

6



Research on Automated Planning

• One of the major subfields of Artificial Intelligence

• Represented at major AI conferences (IJCAI, AAAI, ECAI, etc.)

• Annual specialized conference ICAPS

• International Planning Competition (IPC)

• Major journals: general AI journals

• Artificial Intelligence Journal (AIJ)

• Journal of Artificial Intelligence Research (JAIR)

7



Classical Planning

Environment

• sequential

• fully observable

• deterministic

• static

• discrete

Problem solving method

• problem-specific vs. general vs. learning

8



Classical Planning tasks

Input to a planning algorithm: planning task

• initial state of the world

• actions that change the state

• goal to be achieved

Output of a planning algorithm: plan

• sequence of actions taking initial state to a goal state or confirmation that no plan

exists

• satisficing vs. optimal: in optimal planning the output is a plan with minimal cost

9



Looks familiar?

Description fit (state space) search

10



Formal model

Definition (transition system)

A transition system or state space is a tuple

S = ⟨S ,A, cost,T , s0,S⋆⟩

• finite set of states S

• finite set of actions A

• action costs cost : A → R+
0

• deterministic transitions T ⊆ S × A× S

• initial state s0

• set of goal states S⋆ ⊆ S

s0start

s4

s5

s1 s2

s3

s6

s7

a3 a1

a1

a2

a1

a2

a2

a1

a1

a1

11



Heuristic search algorithms

We still use heuristic search algorithms like A∗ (Hart, Nilsson and Raphael, 1968)

; search guided by a heuristic

BestFirstSearch(S ,A, cost,T , s0, S⋆):

open← priority queue ordered by f (n) = g(n) + h(n)

open.insert(make root node(s0))

while open is not empty do

n← open.pop min()

if n.state ∈ S⋆ then

return extract path(n)

foreach ⟨a, s′⟩ such that ⟨n.state, a, s′⟩ ∈ T do

h← compute heuristic(s′)

open.insert(make node(n, a, s′, h))

return unsolvable

12



General algorithms

The developer does not know the tasks the algorithm needs to solve!

; problem description language, problem independent heuristic

BestFirstSearch(S ,A, cost,T , s0, S⋆):

open← priority queue ordered by f (n) = g(n) + h(n)

open.insert(make root node(s0))

while open is not empty do

n← open.pop min()

if n.state ∈ S⋆ then

return extract path(n)

foreach ⟨a, s′⟩ such that ⟨n.state, a, s′⟩ ∈ T do

h← compute heuristic(s′)

open.insert(make node(n, a, s′, h))

return unsolvable

13



General algorithms

1. Declarative description language to define the problem (planning formalism)

• compact description of state space as input to algorithms

• state spaces exponentially larger than the input

• computationally challenging (PSPACE-complete)

2. Problem independent heuristic!

; allows automatic reasoning about the problem: reformulation, simplification,

abstraction, etc.

14



Description language



Planning formalisms

PDDL (Planning Domain Definition Language)

• input language used in practice

• based on predicate logic

STRIPS (Standford Research Institute Problem Solver): binary state variables

SAS+ (Simplified Action Structures): state variables with arbitrary finite domains

Planners convert automatically from PDDL to STRIPS or SAS+

15



SAS+ formalism

• finite set of state variables, each with a finite and non-empty domain

• finite set of actions with

• preconditions: a partial assignment of variables

• effects: a partial assignment of variables

• cost

• initial state: total assignment of variables

• goal: partial assignment of variables

; induces a transition system

16



Example – Blocksworld state space

n blocks: more than n! states (50 blocks ≈ 1084 states) 17



Example – Blocksworld in SAS+

Var = {posR, posB, posG, clearR, clearB, clearG}

domain(posR) = {onB, onG , onT}

domain(posB) = {onR, onG , onT}

domain(posG) = {onR, onB, onT}

domain(clearR) = {0, 1}

domain(clearB) = {0, 1}

domain(clearG) = {0, 1}

Actions = {moveRBG,moveRGB,moveBRG,moveBGR, . . . }

pre(moveRBG) : {posR = onB, clearR = 1, clearG = 1}

eff(moveRBG) : {posR = onG , clearR = 1, clearG = 0}

cost(moveRBG) = 1

Initial state = {posR = onT , posB = onT , posG = onR,

clearR = 0, clearB = 1, clearG = 1}

Goal = {posR = onB, posB = onG}

18



Heuristics



Heuristics

• Heuristic: function mapping each state to a non-negative number (or ∞)

h : S → R+
0 ∪ {∞}

• Perfect heuristic h∗: map each state s to the cost of an optimal solution for s

• A heuristic is admissible if h(s) ≤ h∗(s) for all states

h(s) = number of blocks not in their final position in s

19



One of the main focus areas in Classical Planning

How do we find good heuristics in a domain independent way?

20



Planning heuristics

General Procedure for Obtaining a Heuristic

Solve a simplified version of the problem

Many ideas for computing domain independent planning heuristics

• abstraction

• delete relaxation

• landmarks

• critical paths

• network flows

• potential heuristics

21



Abstraction

Abstract state space

Concrete state space 22



Abstraction heuristics

• Paths are preserved in abstractions ; abstraction heuristics are admissible

• Competing objectives

• informative heuristic, and

• efficiently computable (small and succinctly encoded abstractions)

How we can find good abstractions?

23



Automatic computation of suitable abstractions

How we can find good abstractions?

Several succesful methods

• Pattern databases (PDBs) or projections

(Culberson and Schaeffer, 1996; Edelkamp, 2001; Haslum 2007)

• Domain abstractions (Hernádvölgyi and Holte, 2000)

• Cartesian abstractions (Seipp and Helmert, 2013)

• Merge & Srink abstractions (Dräger et al., 2006; Helmert, 2007; Sievers, 2014)

24



Example – concrete state space

Two variables v1 and v2

dom(v1) = {a, b, c}
dom(v2) = {1, 2, 3, 4}

a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

o1

o2

o1

o3

o1

o3 o4

o5

o3

o5

o3

o5

25



Example – Cartesian abstraction

Each abstract state is a

cross-product of variable

domain subsets

s1 = {a} × {1, 2}
s2 = {b, c} × {1}
s3 = {b} × {2}
s4 = {c} × {2, 3}
s5 = {a, b} × {3, 4}
s6 = {c} × {4}

a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

o1

o2

o1

o3

o1

o3 o4

o5

o3

o5

o3

o5

26



Automatic abstraction refinement

Counter-Example Guided Abstraction Refinement (CEGAR)

(Clarke et al., 2003; Seipp and Helmert, 2018)

CEGAR algorithm

Start with single-state abstraction

Until a concrete solution is found or time runs out

1. Find abstract solution

2. Check if and why it fails for the concrete problem

3. Refine abstraction

Cartesian abstractions ; quick refinement operations

27



CEGAR example

A B C

Variables

• Position (P), dom(P) = {A,B,C}
• HasRed (R), dom(R) = {0, 1}
• HasBlue (B), dom(B) = {0, 1}

Actions

moveAB, moveBA, moveBC, moveCB

moveAB : P = A =⇒ P = B

pickRed, pickBlue

pickBlue : P = C ,B = 0 =⇒ B = 1

Initial state: ⟨A, 0, 0⟩
Goal: ⟨?, ?, 1⟩

28



Example CEGAR – concrete state space

29



Example CEGAR – initialization – single-state abstraction

Abstract plan: ∅ 30



Example CEGAR – iteration 1

Abstract plan: pickBlue 31



Example CEGAR – iteration 2

Abstract plan: moveBC, pickBlue 32



Example CEGAR – iteration 3

Abstract plan: moveAB, moveBC, pickBlue concrete plan! ; h=3 33



Single Cartesian abstraction vs. multiple Cartesian abstractions

Single abstraction

• Problem: disminishing returns

Solution ; Multiple abstractions

• Diverse abstractions ; focus on different subproblems (e.g. one per goal)

• Combine heuristics admissibly ; cost partitioning

34



Combining heuristics – cost partitioning

A B C
Abstraction 1 (goal: blue diamond)

moveAB, moveBC, pickBlue (h1 = 3)

Abstraction 2 (goal: red diamond)

moveAB, pickRed (h2 = 2 )

Combine heuristics

• Addition h = 5 ; non-admissible heuristic (h∗ = 4)

• Maximum h = 3 ; admissible but usually poor

• Solution ; addition with cost partitioning —for each action distribute its cost

among the abstractions

35



Combining heuristics – cost partitioning

A B C
Abstraction 1 (goal: blue diamond)

moveAB, moveBC, pickBlue (h1 = 3)

Abstraction 2 (goal: red diamond)

moveAB, pickRed (h2 = 2 ; h2 = 1)

Cost partitioning example

moveAB moveBA moveBC moveCB pickRed pickBlue

Abstraction 1 1 1 1 1 0 1

Abstraction 2 0 0 0 0 1 0

35



Cost partitioning techniques

• uniform cost partitioning

• 0-1 cost partitioning

• optimal cost partitioning (Katz and Domshlak, 2010)

• posthoc optimization (Pommerening et al., 2013)

• saturated cost partitioning (Seipp et al. 2020)

• saturated posthoc optimization (Seipp et al. 2021)

36



Summary

• Classical Planning as state space search

• General algorithms ; planning formalism, problem independent heuristics

• Computationally challenging

• Deriving heuristics

• Cartesian abstractions

• CEGAR: automatic generation of abstractions

• Cost partitioning

37



Our current work

Merging Cartesian Abstractions for Classical Planning

Mauricio Salerno Raquel Fuentetaja David Speck Jendrik Seipp

Universidad Carlos III de Madrid Basel University Linköping University

38



Our current work – main idea

Before, for Cartesian abstractions

• One “big” abstraction

• Multiple “small” abstractions: one per goal

Now

Generate efficiently “medium-size” abstractions by merging small abstractions

39



Our current work – some results

Solved problems

844 —single abs

853 —1-goal abs

888 —2-goal abs

40



Our current work

Merging Cartesian Abstractions for Classical Planning

Mauricio Salerno Raquel Fuentetaja David Speck Jendrik Seipp

Universidad Carlos III de Madrid Basel University Linköping University

41


	Description language
	Heuristics

