Automated Planning with Modern Heuristics

Raquel Fuentetaja
Escuela de Verano de Inteligencia Artificial — EVIA 2025

July 11, 2025

Planning and Learning Group (PLG)
Universidad Carlos Il de Madrid

Some slides based on slides from the Al groups at the Universities of Basel and Linkdping

e Very short introduction to Automated Planning

e Intuition behind one of the most relevant heuristics for Classical Planning

General perspective on planning

“Planning is the art of thinking before acting” —P. Haslum

£

.0
ri
5 oo H
5 Pk
9 v
° v
0 r

ACEVE MAXIMIZE

F GoAlL +EXPECTED.

CovdIMoN REWARD

@) Train Station
Container
@ Truck

Model-based vs. data-driven approaches

@@ Model-based approaches now the “inners working” of the
world ~ Reasoning

Data-driven approaches rely on collected data from a
black-box world ~ Learning

General Problem Solving

Wikipedia: General Problem Solver

General Problem Solver (GPS) was a computer program created in 1959
by Herbert Simon, J.C. Shaw, and Allen Newell intended to work as a

universal problem solver machine.

Any formalized symbolic problem can be solved, in principle, by GPS.

[]

GPS was the first computer program which separated its knowledge of
problems ... from its strategy of how to solve problems (a generic solver
engine).

H. Simon & A. Newell. Carnegie Mellon University Libraries

Now we call this Domain-Independent Automated Planning

Research on Automated Planning

One of the major subfields of Artificial Intelligence

Represented at major Al conferences (IJCAI, AAAI, ECAI, etc.)

Annual specialized conference ICAPS

International Planning Competition (IPC)
e Major journals: general Al journals

e Artificial Intelligence Journal (AlJ)
e Journal of Artificial Intelligence Research (JAIR)

Classical Planning

Environment

e sequential

e fully observable
e deterministic

e static

e discrete
Problem solving method

e problem-specific vs. general vs. learning

Classical Planning tasks

Input to a planning algorithm: planning task

e initial state of the world
e actions that change the state

e goal to be achieved

Output of a planning algorithm: plan

e sequence of actions taking initial state to a goal state or confirmation that no plan

exists

e satisficing vs. optimal: in optimal planning the output is a plan with minimal cost

Rubik’s cube 24 puzzle Lights Out (7x7) Sokoban

10

Formal model

Definition (transition system)

A transition system or state space is a tuple
§= <Sﬂ A7 cost, Ta S0, 5*>

finite set of states S

finite set of actions A

e action costs cost : A — R{
e deterministic transitions T C S x Ax S

e initial state sy

set of goal states S, C S

11

Heuristic search algorithms

We still use heuristic search algorithms like A* (Hart, Nilsson and Raphael, 1968)

~> search guided by a heuristic

BestFirstSearch(S, A, cost, T, sp, S*):
open < priority queue ordered by f(n) = g(n) + h(n)
open.insert(make_root_node(sp))
while open is not empty do
n < open.pop-min()
if n.state € S* then
I_ return extract_path(n)

foreach (a,s’) such that (n.state,a,s’) € T do
h < compute_heuristic(s')
open.insert(make_node(n, a, s’, h))

return unsolvable

12

General algorithms

The developer does not know the tasks the algorithm needs to solve!

~» problem description language, problem independent heuristic

BestFirstSearch(S, A, cost, T, sp, S*):
open < priority queue ordered by f(n) = g(n) + h(n)
open.insert(make_root_node(sp))
while open is not empty do
n < open.pop-min()
if n.state € S* then
I_ return extract_path(n)

foreach (a,s’) such that (n.state,a,s’) € T do
h < compute_heuristic(s")
open.insert(make_node(n, a, s’, h))

return unsolvable

13

General algorithms

1. Declarative description language to define the problem (planning formalism)

e compact description of state space as input to algorithms
e state spaces exponentially larger than the input
e computationally challenging (PSPACE-complete)

2. Problem independent heuristic!

~ allows automatic reasoning about the problem: reformulation, simplification,

abstraction, etc.

14

Description language

Planning formalisms

PDDL (Planning Domain Definition Language)

e input language used in practice

e based on predicate logic

STRIPS (Standford Research Institute Problem Solver): binary state variables

SAS™ (Simplified Action Structures): state variables with arbitrary finite domains
Planners convert automatically from PDDL to STRIPS or SAS™

15

SAS* formalism

o finite set of state variables, each with a finite and non-empty domain

e finite set of actions with

e preconditions: a partial assignment of variables
o effects: a partial assignment of variables

e cost

e initial state: total assignment of variables

e goal: partial assignment of variables

~ induces a transition system

16

i
4
: £

n blocks: more than n! states (50 blocks =~ 108 states) 17

Example — Blocksworld in SAS™

Actions = {moveRBG, moveRGB, moveBRG, moveBCGR, ... }
~>

pre(moveRBG) : {posR = onB, clearR = 1, clearG = 1}
eff(moveRBG) : {posR = onG, clearR = 1, clearG = 0}
Var = {posR, posB, posG, clearR, clearB, clearG} cost(moveRBG) =1

domain(posR) = {onB,onG,onT}

domain(posB) = {onR, onG,onT}

domain(posG) = {onR,onB,onT}
domain(clearR) = {0,1}
domain(clearB) = {0, 1}
domain(clearG) = {0,1} Goal = {posR = onB, posB = onG}

Initial state = {posR = onT, posB = onT, posG = onR,
clearR = 0,clearB = 1, clearG = 1}

18

Heuristics

Heuristics

e Heuristic: function mapping each state to a non-negative number (or oo)
h:S— R U{oc}

e Perfect heuristic h": map each state s to the cost of an optimal solution for s

e A heuristic is admissible if h(s) < h*(s) for all states

h(s) = number of blocks not in their final position in s

19

One of the main focus areas in Classical Planning

How do we find good heuristics in a domain independent way?

20

Planning heuristics

General Procedure for Obtaining a Heuristic

Solve a simplified version of the problem

Many ideas for computing domain independent planning heuristics

e abstraction

delete relaxation

landmarks

critical paths

network flows

potential heuristics

21

Abstraction

Abstract state space

Concrete state space ' 22

Abstraction heuristics

e Paths are preserved in abstractions ~ abstraction heuristics are admissible
e Competing objectives

e informative heuristic, and
e efficiently computable (small and succinctly encoded abstractions)

How we can find good abstractions?

23

Automatic computation of suitable abstractions

How we can find good abstractions?

Several succesful methods
e Pattern databases (PDBs) or projections
(Culberson and Schaeffer, 1996; Edelkamp, 2001; Haslum 2007)
e Domain abstractions (Hernadvdlgyi and Holte, 2000)
e Cartesian abstractions (Seipp and Helmert, 2013)
e Merge & Srink abstractions (Drager et al., 2006; Helmert, 2007; Sievers, 2014)

24

Example — concrete state space

02
Two variables vy and v

dom(v1) = {a, b, c}
dom(wp) ={1,2,3,4}

25

Example — Cartesian abstraction

4 N
Each abstract state is a (/a_l\ o1 @ e %5 e
- N4
cross-product of variable L

domain subsets o
X
51 = {a} X {172} Gl 01 - b3 05 @
5= {b.c} x {1} |
s3 = {b} x {2}
s = {c} x{2,3} o o o o o8
S5 = {a’ b} X {374}
s = {c} x {4} Q e N Q
—

26

Automatic abstraction refinement

Counter-Example Guided Abstraction Refinement (CEGAR)
(Clarke et al., 2003; Seipp and Helmert, 2018)

CEGAR algorithm

Start with single-state abstraction
Until a concrete solution is found or time runs out

1. Find abstract solution

2. Check if and why it fails for the concrete problem

3. Refine abstraction

Cartesian abstractions ~» quick refinement operations

CEGAR example

A B C Actions
moveAB, moveBA, moveBC, moveCB
‘ ‘ moveAB: P=A— P =8B
pickRed, pickBlue
pickBlue: P=C,B=0=— B =1
Variables
e Position (P), dom(P) = {A,B,C}
e HasRed (R), dom(R) = {0,1} Initial state: (A,0,0)

o HasBlue (B), dom(B) = {0,1} Goal: (7,7,1)

28

Example CEGAR - concrete state space

%00 %0 0%
.% * .%0 ’%

29

Example CEGAR - initialization — single-state abstraction

(N
%00 %0 0%_
%0 %0 ‘%_
7] [] [T
\C /)

Abstract plan: () 30

Example CEGAR - iteration 1

& B B
L i 0
7] [] [T

J

Abstract plan: pickBlue 31

Example CEGAR - iteration 2

Y

BL) I
% * %0 ‘%_
J —_

.

7] [] [T
4

Abstract plan: moveBC, pickBlue 32

Example CEGAR - iteration 3

A —T R (]

Abstract plan: moveAB, moveBC, pickBlue concrete plan! ~ h=3 33

Single Cartesian abstraction vs. multiple Cartesian abstractions

Single abstraction
e Problem: disminishing returns
Solution ~ Multiple abstractions

e Diverse abstractions ~ focus on different subproblems (e.g. one per goal)

e Combine heuristics admissibly ~» cost partitioning

34

Combining heuristics — cost partitioning

Abstraction 1 (goal: blue diamond)

A
moveAB, moveBC, pickBlue (h; = 3)
L IR 2

Abstraction 2 (goal: red diamond)

moveAB, pickRed (hy =2))
Combine heuristics
e Addition h =5 ~ non-admissible heuristic (h* = 4)
e Maximum h = 3 ~ admissible but usually poor

e Solution ~» addition with cost partitioning —for each action distribute its cost
among the abstractions

35

Combining heuristics — cost partitioning

Abstraction 1 (goal: blue diamond)

% moveAB, moveBC, pickBlue (h; = 3)

Abstraction 2 (goal: red diamond)

moveAB, pickRed (h =2 ~ hy = 1)

Cost partitioning example

moveAB moveBA moveBC moveCB pickRed pickBlue

Abstraction 1 1 1 1 1 0 1
Abstraction 2 0 0 0 0 1 0

35

Cost partitioning techniques

e uniform cost partitioning

e (-1 cost partitioning

e optimal cost partitioning (Katz and Domshlak, 2010)
e posthoc optimization (Pommerening et al., 2013)

e saturated cost partitioning (Seipp et al. 2020)

e saturated posthoc optimization (Seipp et al. 2021)

36

Classical Planning as state space search

General algorithms ~ planning formalism, problem independent heuristics

Computationally challenging

Deriving heuristics

e Cartesian abstractions
e CEGAR: automatic generation of abstractions
e Cost partitioning

37

Our current work

Merging Cartesian Abstractions for Classical Planning

o)
V. :

Mauricio Salerno Raquel Fuentetaja David Speck Jendrik Seipp

Universidad Carlos Il de Madrid Basel University Linkoping University

38

Our current work — main idea

Before, for Cartesian abstractions

e One "big" abstraction

e Multiple “small” abstractions: one per goal

Now

Generate efficiently “medium-size” abstractions by merging small abstractions

39

Our current work — some results

PEHO®+ XSV AAPEOS+XSTYAAPrPEO X

agricola
airport
barman
blocksworld
data-network
depots
driverlog
elevators
floortile
freecell

ged

grid

gripper
hiking
logistics
miconic
movie
mprime
mystery
nomystery
openstacks
organic
organic-split

XOPVAAPHES +XOV AAPEO +XOPY AL

parcprinter
pathways
pegsol
petri-net
pipes-nt
pipes-t

psr

rovers
satellite
scanalyzer
snake
sokoban
spider
storage
termes
tetris
tidybot

tpp
transport
trucks
visitall
woodworking
zenotravel

06-pairs-mer (Iower for 600 tasks)

10%

10?

expansions_until_last_jump

> TRESHORAEA SN <46 <8 XA A

100 102 10%
02-singles (lower for 25 tasks)

10°

10°

Solved problems
844 —single abs

853 —1-goal abs
888 —2-goal abs

40

Our current work

Merging Cartesian Abstractions for Classical Planning

o)
V. :

Mauricio Salerno Raquel Fuentetaja David Speck Jendrik Seipp

Universidad Carlos Il de Madrid Basel University Linkoping University

41

	Description language
	Heuristics

