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Overview

• Very short introduction to Automated Planning

• Intuition behind one of the most relevant heuristics for Classical Planning

2



General perspective on planning

“Planning is the art of thinking before acting” —P. Haslum

3



Examples
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Model-based vs. data-driven approaches

Model-based approaches now the “inners working” of the

world ; Reasoning

Data-driven approaches rely on collected data from a

black-box world ; Learning
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General Problem Solving

Wikipedia: General Problem Solver

General Problem Solver (GPS) was a computer program created in 1959

by Herbert Simon, J.C. Shaw, and Allen Newell intended to work as a

universal problem solver machine.

Any formalized symbolic problem can be solved, in principle, by GPS.

[...]

GPS was the first computer program which separated its knowledge of

problems ... from its strategy of how to solve problems (a generic solver

engine).
H. Simon & A. Newell. Carnegie Mellon University Libraries

Now we call this Domain-Independent Automated Planning
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Research on Automated Planning

• One of the major subfields of Artificial Intelligence

• Represented at major AI conferences (IJCAI, AAAI, ECAI, etc.)

• Annual specialized conference ICAPS

• International Planning Competition (IPC)

• Major journals: general AI journals

• Artificial Intelligence Journal (AIJ)

• Journal of Artificial Intelligence Research (JAIR)
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Classical Planning

Environment

• sequential

• fully observable

• deterministic

• static

• discrete

Problem solving method

• problem-specific vs. general vs. learning
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Classical Planning tasks

Input to a planning algorithm: planning task

• initial state of the world

• actions that change the state

• goal to be achieved

Output of a planning algorithm: plan

• sequence of actions taking initial state to a goal state or confirmation that no plan

exists

• satisficing vs. optimal: in optimal planning the output is a plan with minimal cost
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Looks familiar?

Description fit (state space) search
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Formal model

Definition (transition system)

A transition system or state space is a tuple

S = ⟨S ,A, cost,T , s0,S⋆⟩

• finite set of states S

• finite set of actions A

• action costs cost : A → R+
0

• deterministic transitions T ⊆ S × A× S

• initial state s0

• set of goal states S⋆ ⊆ S
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Heuristic search algorithms

We still use heuristic search algorithms like A∗ (Hart, Nilsson and Raphael, 1968)

; search guided by a heuristic

BestFirstSearch(S ,A, cost,T , s0, S⋆):

open← priority queue ordered by f (n) = g(n) + h(n)

open.insert(make root node(s0))

while open is not empty do

n← open.pop min()

if n.state ∈ S⋆ then

return extract path(n)

foreach ⟨a, s′⟩ such that ⟨n.state, a, s′⟩ ∈ T do

h← compute heuristic(s′)

open.insert(make node(n, a, s′, h))

return unsolvable

12



General algorithms

The developer does not know the tasks the algorithm needs to solve!

; problem description language, problem independent heuristic

BestFirstSearch(S ,A, cost,T , s0, S⋆):

open← priority queue ordered by f (n) = g(n) + h(n)

open.insert(make root node(s0))

while open is not empty do

n← open.pop min()

if n.state ∈ S⋆ then

return extract path(n)

foreach ⟨a, s′⟩ such that ⟨n.state, a, s′⟩ ∈ T do

h← compute heuristic(s′)

open.insert(make node(n, a, s′, h))

return unsolvable
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General algorithms

1. Declarative description language to define the problem (planning formalism)

• compact description of state space as input to algorithms

• state spaces exponentially larger than the input

• computationally challenging (PSPACE-complete)

2. Problem independent heuristic!

; allows automatic reasoning about the problem: reformulation, simplification,

abstraction, etc.
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Description language



Planning formalisms

PDDL (Planning Domain Definition Language)

• input language used in practice

• based on predicate logic

STRIPS (Standford Research Institute Problem Solver): binary state variables

SAS+ (Simplified Action Structures): state variables with arbitrary finite domains

Planners convert automatically from PDDL to STRIPS or SAS+

15



SAS+ formalism

• finite set of state variables, each with a finite and non-empty domain

• finite set of actions with

• preconditions: a partial assignment of variables

• effects: a partial assignment of variables

• cost

• initial state: total assignment of variables

• goal: partial assignment of variables

; induces a transition system
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Example – Blocksworld state space

n blocks: more than n! states (50 blocks ≈ 1084 states) 17



Example – Blocksworld in SAS+

Var = {posR, posB, posG, clearR, clearB, clearG}

domain(posR) = {onB, onG , onT}

domain(posB) = {onR, onG , onT}

domain(posG) = {onR, onB, onT}

domain(clearR) = {0, 1}

domain(clearB) = {0, 1}

domain(clearG) = {0, 1}

Actions = {moveRBG,moveRGB,moveBRG,moveBGR, . . . }

pre(moveRBG) : {posR = onB, clearR = 1, clearG = 1}

eff(moveRBG) : {posR = onG , clearR = 1, clearG = 0}

cost(moveRBG) = 1

Initial state = {posR = onT , posB = onT , posG = onR,

clearR = 0, clearB = 1, clearG = 1}

Goal = {posR = onB, posB = onG}
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Heuristics



Heuristics

• Heuristic: function mapping each state to a non-negative number (or ∞)

h : S → R+
0 ∪ {∞}

• Perfect heuristic h∗: map each state s to the cost of an optimal solution for s

• A heuristic is admissible if h(s) ≤ h∗(s) for all states

h(s) = number of blocks not in their final position in s
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One of the main focus areas in Classical Planning

How do we find good heuristics in a domain independent way?
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Planning heuristics

General Procedure for Obtaining a Heuristic

Solve a simplified version of the problem

Many ideas for computing domain independent planning heuristics

• abstraction

• delete relaxation

• landmarks

• critical paths

• network flows

• potential heuristics

21



Abstraction

Abstract state space

Concrete state space 22



Abstraction heuristics

• Paths are preserved in abstractions ; abstraction heuristics are admissible

• Competing objectives

• informative heuristic, and

• efficiently computable (small and succinctly encoded abstractions)

How we can find good abstractions?
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Automatic computation of suitable abstractions

How we can find good abstractions?

Several succesful methods

• Pattern databases (PDBs) or projections

(Culberson and Schaeffer, 1996; Edelkamp, 2001; Haslum 2007)

• Domain abstractions (Hernádvölgyi and Holte, 2000)

• Cartesian abstractions (Seipp and Helmert, 2013)

• Merge & Srink abstractions (Dräger et al., 2006; Helmert, 2007; Sievers, 2014)
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Example – concrete state space

Two variables v1 and v2

dom(v1) = {a, b, c}
dom(v2) = {1, 2, 3, 4}

a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4
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Example – Cartesian abstraction

Each abstract state is a

cross-product of variable

domain subsets

s1 = {a} × {1, 2}
s2 = {b, c} × {1}
s3 = {b} × {2}
s4 = {c} × {2, 3}
s5 = {a, b} × {3, 4}
s6 = {c} × {4}
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Automatic abstraction refinement

Counter-Example Guided Abstraction Refinement (CEGAR)

(Clarke et al., 2003; Seipp and Helmert, 2018)

CEGAR algorithm

Start with single-state abstraction

Until a concrete solution is found or time runs out

1. Find abstract solution

2. Check if and why it fails for the concrete problem

3. Refine abstraction

Cartesian abstractions ; quick refinement operations
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CEGAR example

A B C

Variables

• Position (P), dom(P) = {A,B,C}
• HasRed (R), dom(R) = {0, 1}
• HasBlue (B), dom(B) = {0, 1}

Actions

moveAB, moveBA, moveBC, moveCB

moveAB : P = A =⇒ P = B

pickRed, pickBlue

pickBlue : P = C ,B = 0 =⇒ B = 1

Initial state: ⟨A, 0, 0⟩
Goal: ⟨?, ?, 1⟩
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Example CEGAR – concrete state space
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Example CEGAR – initialization – single-state abstraction

Abstract plan: ∅ 30



Example CEGAR – iteration 1

Abstract plan: pickBlue 31



Example CEGAR – iteration 2

Abstract plan: moveBC, pickBlue 32



Example CEGAR – iteration 3

Abstract plan: moveAB, moveBC, pickBlue concrete plan! ; h=3 33



Single Cartesian abstraction vs. multiple Cartesian abstractions

Single abstraction

• Problem: disminishing returns

Solution ; Multiple abstractions

• Diverse abstractions ; focus on different subproblems (e.g. one per goal)

• Combine heuristics admissibly ; cost partitioning
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Combining heuristics – cost partitioning

A B C
Abstraction 1 (goal: blue diamond)

moveAB, moveBC, pickBlue (h1 = 3)

Abstraction 2 (goal: red diamond)

moveAB, pickRed (h2 = 2 )

Combine heuristics

• Addition h = 5 ; non-admissible heuristic (h∗ = 4)

• Maximum h = 3 ; admissible but usually poor

• Solution ; addition with cost partitioning —for each action distribute its cost

among the abstractions
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Combining heuristics – cost partitioning

A B C
Abstraction 1 (goal: blue diamond)

moveAB, moveBC, pickBlue (h1 = 3)

Abstraction 2 (goal: red diamond)

moveAB, pickRed (h2 = 2 ; h2 = 1)

Cost partitioning example

moveAB moveBA moveBC moveCB pickRed pickBlue

Abstraction 1 1 1 1 1 0 1

Abstraction 2 0 0 0 0 1 0
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Cost partitioning techniques

• uniform cost partitioning

• 0-1 cost partitioning

• optimal cost partitioning (Katz and Domshlak, 2010)

• posthoc optimization (Pommerening et al., 2013)

• saturated cost partitioning (Seipp et al. 2020)

• saturated posthoc optimization (Seipp et al. 2021)

36



Summary

• Classical Planning as state space search

• General algorithms ; planning formalism, problem independent heuristics

• Computationally challenging

• Deriving heuristics

• Cartesian abstractions

• CEGAR: automatic generation of abstractions

• Cost partitioning
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Our current work

Merging Cartesian Abstractions for Classical Planning

Mauricio Salerno Raquel Fuentetaja David Speck Jendrik Seipp

Universidad Carlos III de Madrid Basel University Linköping University
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Our current work – main idea

Before, for Cartesian abstractions

• One “big” abstraction

• Multiple “small” abstractions: one per goal

Now

Generate efficiently “medium-size” abstractions by merging small abstractions
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Our current work – some results

Solved problems

844 —single abs

853 —1-goal abs

888 —2-goal abs

40



Our current work

Merging Cartesian Abstractions for Classical Planning

Mauricio Salerno Raquel Fuentetaja David Speck Jendrik Seipp

Universidad Carlos III de Madrid Basel University Linköping University
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