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e Very short introduction to Automated Planning

e Intuition behind one of the most relevant heuristics for Classical Planning



General perspective on planning

“Planning is the art of thinking before acting” —P. Haslum
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Model-based vs. data-driven approaches

@@ Model-based approaches now the “inners working” of the
world ~ Reasoning

Data-driven approaches rely on collected data from a
black-box world ~ Learning



General Problem Solving

Wikipedia: General Problem Solver

General Problem Solver (GPS) was a computer program created in 1959
by Herbert Simon, J.C. Shaw, and Allen Newell intended to work as a

universal problem solver machine.

Any formalized symbolic problem can be solved, in principle, by GPS.

[]

GPS was the first computer program which separated its knowledge of
problems ... from its strategy of how to solve problems (a generic solver
engine).

H. Simon & A. Newell. Carnegie Mellon University Libraries

Now we call this Domain-Independent Automated Planning



Research on Automated Planning

One of the major subfields of Artificial Intelligence

Represented at major Al conferences (IJCAI, AAAI, ECAI, etc.)

Annual specialized conference ICAPS

International Planning Competition (IPC)
e Major journals: general Al journals

e Artificial Intelligence Journal (AlJ)
e Journal of Artificial Intelligence Research (JAIR)



Classical Planning

Environment

e sequential

e fully observable
e deterministic

e static

e discrete
Problem solving method

e problem-specific vs. general vs. learning



Classical Planning tasks

Input to a planning algorithm: planning task

e initial state of the world
e actions that change the state

e goal to be achieved

Output of a planning algorithm: plan

e sequence of actions taking initial state to a goal state or confirmation that no plan

exists

e satisficing vs. optimal: in optimal planning the output is a plan with minimal cost
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Formal model

Definition (transition system)

A transition system or state space is a tuple
§= <Sﬂ A7 cost, Ta S0, 5*>

finite set of states S

finite set of actions A

e action costs cost : A — R{
e deterministic transitions T C S x Ax S

e initial state sy

set of goal states S, C S
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Heuristic search algorithms

We still use heuristic search algorithms like A* (Hart, Nilsson and Raphael, 1968)

~> search guided by a heuristic

BestFirstSearch(S, A, cost, T, sp, S*):
open < priority queue ordered by f(n) = g(n) + h(n)
open.insert(make_root_node(sp))
while open is not empty do
n < open.pop-min()
if n.state € S* then
I_ return extract_path(n)

foreach (a,s’) such that (n.state,a,s’) € T do
h < compute_heuristic(s')
open.insert(make_node(n, a, s’, h))

return unsolvable
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General algorithms

The developer does not know the tasks the algorithm needs to solve!

~» problem description language, problem independent heuristic

BestFirstSearch(S, A, cost, T, sp, S*):
open < priority queue ordered by f(n) = g(n) + h(n)
open.insert(make_root_node(sp))
while open is not empty do
n < open.pop-min()
if n.state € S* then
I_ return extract_path(n)

foreach (a,s’) such that (n.state,a,s’) € T do
h < compute_heuristic(s")
open.insert(make_node(n, a, s’, h))

return unsolvable
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General algorithms

1. Declarative description language to define the problem (planning formalism)

e compact description of state space as input to algorithms
e state spaces exponentially larger than the input
e computationally challenging (PSPACE-complete)

2. Problem independent heuristic!

~ allows automatic reasoning about the problem: reformulation, simplification,

abstraction, etc.
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Description language




Planning formalisms

PDDL (Planning Domain Definition Language)

e input language used in practice

e based on predicate logic

STRIPS (Standford Research Institute Problem Solver): binary state variables

SAS™ (Simplified Action Structures): state variables with arbitrary finite domains
Planners convert automatically from PDDL to STRIPS or SAS™
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SAS* formalism

o finite set of state variables, each with a finite and non-empty domain

e finite set of actions with

e preconditions: a partial assignment of variables
o effects: a partial assignment of variables

e cost

e initial state: total assignment of variables

e goal: partial assignment of variables

~ induces a transition system

16
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Example — Blocksworld in SAS™

Actions = {moveRBG, moveRGB, moveBRG, moveBCGR, ... }
~>

pre(moveRBG) : {posR = onB, clearR = 1, clearG = 1}
eff(moveRBG) : {posR = onG, clearR = 1, clearG = 0}
Var = {posR, posB, posG, clearR, clearB, clearG} cost(moveRBG) =1

domain(posR) = {onB,onG,onT}

domain(posB) = {onR, onG,onT}

domain(posG) = {onR,onB,onT}
domain(clearR) = {0,1}
domain(clearB) = {0, 1}
domain(clearG) = {0,1} Goal = {posR = onB, posB = onG}

Initial state = {posR = onT, posB = onT, posG = onR,
clearR = 0,clearB = 1, clearG = 1}
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Heuristics




Heuristics

e Heuristic: function mapping each state to a non-negative number (or oo)
h:S— R U{oc}

e Perfect heuristic h": map each state s to the cost of an optimal solution for s

e A heuristic is admissible if h(s) < h*(s) for all states

h(s) = number of blocks not in their final position in s
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One of the main focus areas in Classical Planning

How do we find good heuristics in a domain independent way?

20



Planning heuristics

General Procedure for Obtaining a Heuristic

Solve a simplified version of the problem

Many ideas for computing domain independent planning heuristics

e abstraction

delete relaxation

landmarks

critical paths

network flows

potential heuristics
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Abstraction

Abstract state space

Concrete state space ' 22



Abstraction heuristics

e Paths are preserved in abstractions ~ abstraction heuristics are admissible
e Competing objectives

e informative heuristic, and
e efficiently computable (small and succinctly encoded abstractions)

How we can find good abstractions?

23



Automatic computation of suitable abstractions

How we can find good abstractions?

Several succesful methods
e Pattern databases (PDBs) or projections
(Culberson and Schaeffer, 1996; Edelkamp, 2001; Haslum 2007)
e Domain abstractions (Hernadvdlgyi and Holte, 2000)
e Cartesian abstractions (Seipp and Helmert, 2013)
e Merge & Srink abstractions (Drager et al., 2006; Helmert, 2007; Sievers, 2014)
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Example — concrete state space

02
Two variables vy and v

dom(v1) = {a, b, c}
dom(wp) ={1,2,3,4}
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Example — Cartesian abstraction

4 N
Each abstract state is a (/a_l\ o1 @ e %5 e
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domain subsets o
X
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s = {c} x{2,3} o o o o o8
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—
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Automatic abstraction refinement

Counter-Example Guided Abstraction Refinement (CEGAR)
(Clarke et al., 2003; Seipp and Helmert, 2018)

CEGAR algorithm

Start with single-state abstraction
Until a concrete solution is found or time runs out

1. Find abstract solution

2. Check if and why it fails for the concrete problem

3. Refine abstraction

Cartesian abstractions ~» quick refinement operations



CEGAR example

A B C Actions
moveAB, moveBA, moveBC, moveCB
‘ ‘ moveAB: P=A— P =8B
pickRed, pickBlue
pickBlue: P=C,B=0=— B =1
Variables
e Position (P), dom(P) = {A,B,C}
e HasRed (R), dom(R) = {0,1} Initial state: (A,0,0)

o HasBlue (B), dom(B) = {0,1} Goal: (7,7,1)
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Example CEGAR - concrete state space

%00 %0 0%
.% * .%0 ’%
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Example CEGAR - initialization — single-state abstraction
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Example CEGAR - iteration 1
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Example CEGAR - iteration 2
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Example CEGAR - iteration 3

A —T R (]

Abstract plan: moveAB, moveBC, pickBlue concrete plan! ~ h=3 33



Single Cartesian abstraction vs. multiple Cartesian abstractions

Single abstraction
e Problem: disminishing returns
Solution ~ Multiple abstractions

e Diverse abstractions ~ focus on different subproblems (e.g. one per goal)

e Combine heuristics admissibly ~» cost partitioning
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Combining heuristics — cost partitioning

Abstraction 1 (goal: blue diamond)

A
moveAB, moveBC, pickBlue (h; = 3)
L IR 2

Abstraction 2 (goal: red diamond)

moveAB, pickRed (hy =2))
Combine heuristics
e Addition h =5 ~ non-admissible heuristic (h* = 4)
e Maximum h = 3 ~ admissible but usually poor

e Solution ~» addition with cost partitioning —for each action distribute its cost
among the abstractions
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Combining heuristics — cost partitioning

Abstraction 1 (goal: blue diamond)

% moveAB, moveBC, pickBlue (h; = 3)

Abstraction 2 (goal: red diamond)

moveAB, pickRed (h =2 ~ hy = 1)

Cost partitioning example

moveAB moveBA moveBC moveCB pickRed pickBlue

Abstraction 1 1 1 1 1 0 1
Abstraction 2 0 0 0 0 1 0
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Cost partitioning techniques

e uniform cost partitioning

e (-1 cost partitioning

e optimal cost partitioning (Katz and Domshlak, 2010)
e posthoc optimization (Pommerening et al., 2013)

e saturated cost partitioning (Seipp et al. 2020)

e saturated posthoc optimization (Seipp et al. 2021)
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Classical Planning as state space search

General algorithms ~ planning formalism, problem independent heuristics

Computationally challenging

Deriving heuristics

e Cartesian abstractions
e CEGAR: automatic generation of abstractions
e Cost partitioning
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Our current work

Merging Cartesian Abstractions for Classical Planning

o)
V. :

Mauricio Salerno Raquel Fuentetaja David Speck Jendrik Seipp

Universidad Carlos Il de Madrid Basel University Linkoping University
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Our current work — main idea

Before, for Cartesian abstractions

e One "big" abstraction

e Multiple “small” abstractions: one per goal

Now

Generate efficiently “medium-size” abstractions by merging small abstractions
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Our current work — some results
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Our current work

Merging Cartesian Abstractions for Classical Planning

o)
V. :

Mauricio Salerno Raquel Fuentetaja David Speck Jendrik Seipp

Universidad Carlos Il de Madrid Basel University Linkoping University
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