

USE CASE: IMAGE RECOGNITION

Petia Radeva, IAPR Fellow, ELLIS Member

Full professor

Head of "Artificial Intelligence and Biomedical Applications" Consolidated Research Group,

Universitat de Barcelona, Spain &

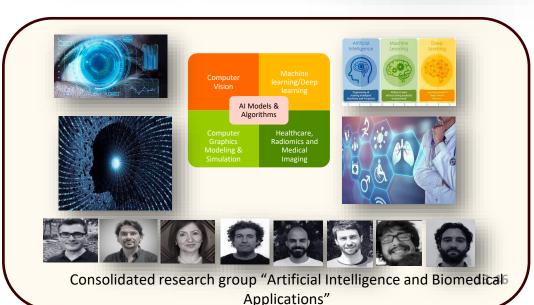
Barcelona Supercomputing Center

University of Barcelona

In 1450, King Alfonso V the Magnanimous established the University of Barcelona.

International stu	idents	Total faculty staff 3,076		
UG students	PG students	Domestic staff	● Int'l staff	
	6,308	6,308 • UG students • PG students	6,308 3,076 ■ UG students	

- Ranked 1st Spanish university in 2023-2024 rankings
 - THE World University Rankings, (#152)
 - SCIMAGO Institutions ranking 2024 (#91)
 - QS World University Rankings 2025 (#165)



WHO AM I?

Petia Radeva

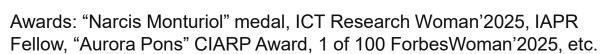
Google scholar hindex is 59 with >12000 cites

Full professor at the University of Barcelona, Dept. Mathematics and Informatics.

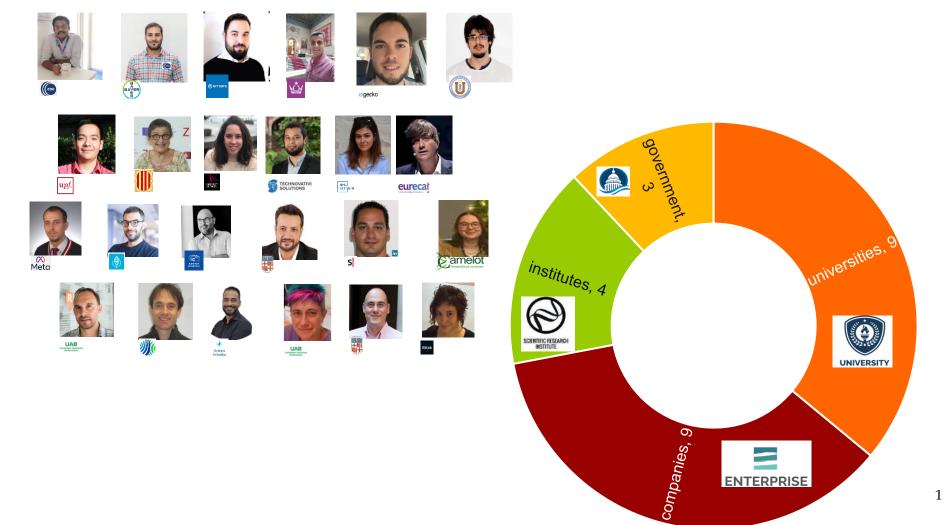
280 journals and chapters; 20 scientific books

80+ invited talks in conferences (MetaFood CVPRW'24) and summer schools

Program Co-Chair of ACM Multimedia 2027, Hong Kong; Area chair of CVPR'2025, WACV'2024, ICCV'2023., CVPR'2022, Track chair of ICPR'2024, Program chair of IBPRIA'25, VISAPP'24, VISAPP'23, VISAPP'22, VISAP'21, VISAPP'20, etc.



What am I most proud of?



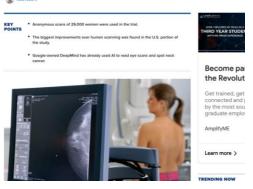
Let's know us

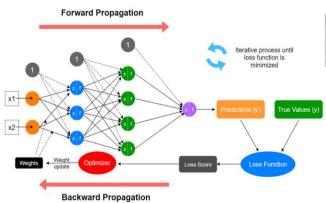
Let's know me your opinion

Go to goSocrative.com

Enter to room: petiaradeva

What are we doing?





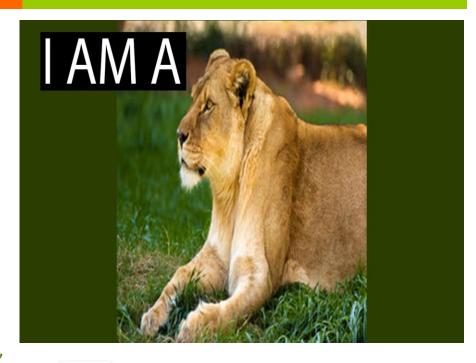
The Big Challenge of DL

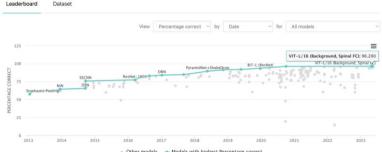
HOW MANY OF YOU

Are using annotated datasets?

Are (not) using annotated datasets?

- Did you know that:
 - 3.4% average error rate across all datasets,6% for ImageNet
 - MNIST digits dataset contains 15 (humanvalidated) label errors in the test set.





So there are 2 main questions:

How to find the noisy labels?

 Can we use them to make algorithms more robust?

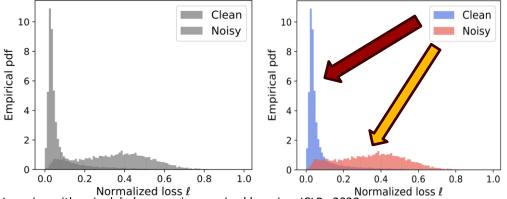
Sample Selection Techniques

Question: What is a good selection criterion to split clean and noisy data?

Common strategy:

Using Loss Distribution to split the

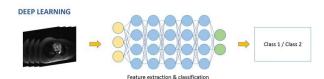
Small loss -> Clean Samples



Junnan Li, Richard Socher, and Steven C.H. Hoi. DivideMix: Learning with noisy labels as semi-supervised learning. ICLR, 2020.

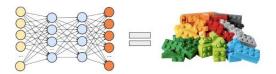
¿What makes NNs so popular?

Advantages:



1. End-to-end learning

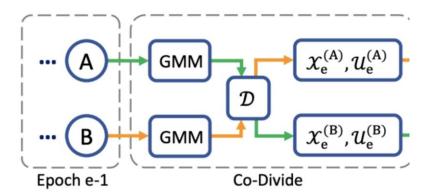
2. Modularity



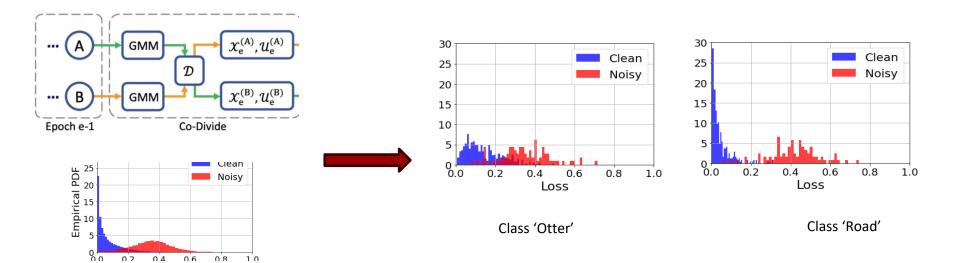
Confirmation Bias

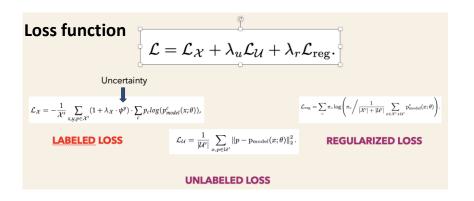
Training a model using its own data division causes confirmation bias

Because noisy samples that are wrongly grouped into the labelled set would keep lower loss due to the model overfitting to the labels.



Class-conditional Learning with Noisy Labeling





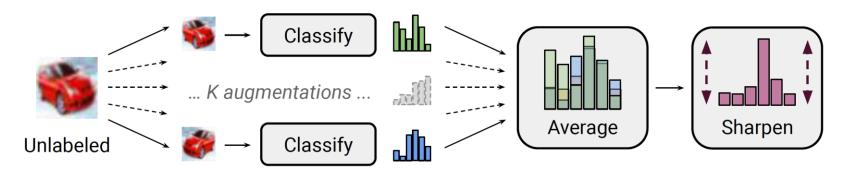
All classes

- Global noise modelling assumes all samples as i.i.d
- Noise leads to some classes being harder to learn
- Different classes exhibit different loss characteristics

Tatjer, Albert, et al. "CCLM: Class-Conditional Label Noise Modelling." Iberian Conference on Pattern Recognition and Image Analysis. Cham: Springer Nature Switzerland, 2023. Best paper award.

Are the data enough?

The Mixup algorithm



Label guessing

$$\bar{q}_b = \frac{1}{K} \sum_{k=1}^{K} p_{\text{model}}(y \mid \hat{u}_{b,k}; \theta)$$

over K augmentations of u_b

Mixup

$$\lambda \sim \text{Beta}(\alpha, \alpha)$$

$$\lambda' = \max(\lambda, 1 - \lambda)$$

$$x' = \lambda' x_1 + (1 - \lambda') x_2$$

$$p' = \lambda' p_1 + (1 - \lambda') p_2$$

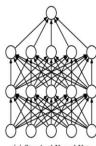
19

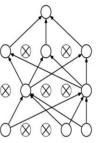
Uncertainty

How certain is the model in making the predictions?

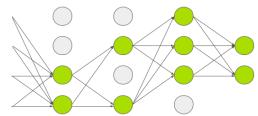
How to measure the uncertainty?

- Training a neural network with dropout is equivalent to doing approximate variational inference in a probabilistic deep Gaussian process.
- ❖When dealing with the predictive distribution, we can simply have a Bernoulli distribution over the weights.

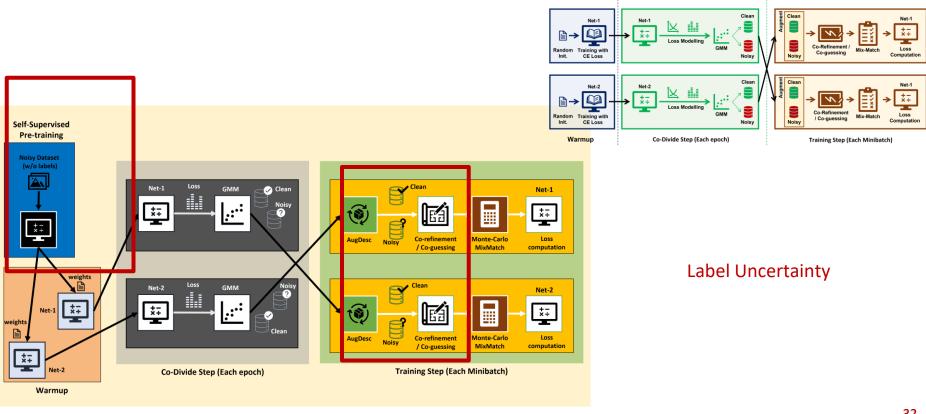




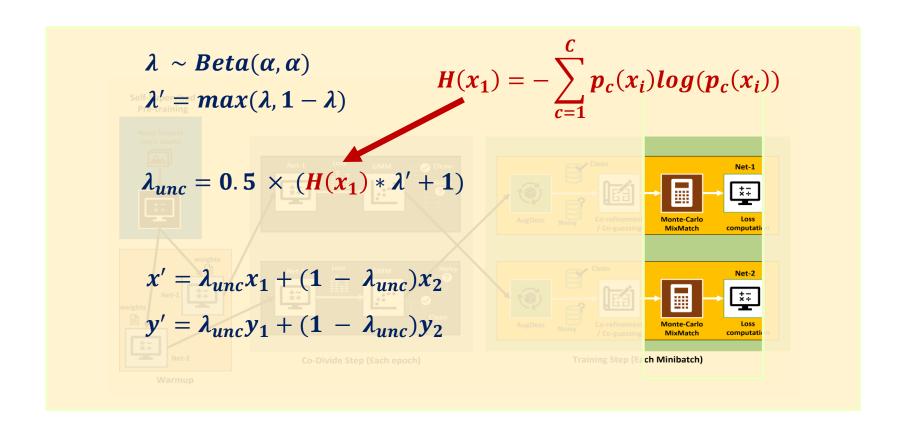
(b) After applying dropout.



Bayesian DivideMix++



Monte-Carlo MixMatch



Class-conditional Importance Weighted Loss

Cross Entropy Loss over augmented and mixed clean data

Mean squared error over augmented and mixed noisy data

Total loss: $\mathcal{L} = \mathcal{L}_x + \lambda_u \mathcal{L}_u + \lambda_r \mathcal{L}_{reg}$

Regularization term

Class-conditional Supervised Loss

$$\mathcal{L}_{x} = -\frac{1}{|\mathcal{X}'|} \sum_{\mathbf{x}, \mathbf{p} \in \mathcal{X}'} \sum_{\mathbf{c}} p_{\mathbf{c}} \log \left(p_{\mathbf{c}}^{\text{model}}(\mathbf{x}; \boldsymbol{\theta}) \right)$$

Uncertainty-aware Loss

$$\mathcal{L}_{u} = \frac{1}{|u'|} \sum_{\substack{(\mathbf{x}, \mathbf{p}) \in u'}} \|\mathbf{p} - \mathbf{pmodel}(\mathbf{x}; \mathbf{\theta})\|_{2}^{2}$$

Unsupervised Loss

$$\mathcal{L}_{reg} = \sum_{c} \pi_{c} log \binom{\pi_{c}}{\left|\frac{1}{|\mathcal{X}'| + |\mathcal{U}'|} \sum_{x \in \mathcal{X}' + \mathcal{U}'} p_{model}^{c}(x; \theta)\right)}, \qquad \pi_{c} = \frac{w_{c}}{C}$$

Class-conditional Loss

$$\mathbf{W} = \frac{\max(\lambda_w, f')}{|\max(\lambda_w, f')|}$$

Validation

PCEMS'24, Nagpur

						P	erfo	rman	ce Com	parison
_	_	_				_			_	
Datasets	Method		20%	50%	80%	90%	Asym. 40%			
CIFAR-10	DivideMix	Best	96.1	94.6	93.2	76	93.4			
		Average	95.7	94.4	92.9	75.4	92.1			
	CCLM (Ours)	Best	Metho	d / Noise	ratio	20%		50%	80%	90%
		Average	DivideMix (I	CLR,	Best	96.1		94.6	93.2	76.0
CIFAR-	Divide 84in	Doot	2020) Li et al.		Last	95.7		94.4	92.9	75.4
100	DivideMix	Best	DM + AugDe		Best	96.3		95.4	93.8	91.9
		Average	(CVPR, 2021 et al.	.) Nishi	Last	96.2		95.1	93.6	91.8
	CCLM	Best	DM + C2D (\	WACV,	Best	96.43±0.07	9	95.32±0.12	94.40±0.04	93.57±0.09
	(Ours)		2022) Zheltonozhs	skii et al.	Last	96.23±0.09	9	95.15±0.16	94.30±0.12	93.42±0.09
		Average	Sel-CL+ (CVI	PR, 2022)	Best	95.5		93.9	89.2	81.9
			Li et al.		Last	_		_	_	_
			UNICON (CV	/PR,	Best	96.0		95.6	93.9	90.8
			2022) Karim et al.		Last	-		-	-	-
			ULC (AAAI, 2		Best	96.1		95.2	94.0	86.4
			Huang, Bai,		Last	95.9		94.7	93.2	85.8
			LongReMix	(PR <i>,</i>	Best	96.3±0.1		95.1±0.1	93.8±0.2	79.9±2.7
			2023) Cordeiro et	al.	Last	96.0±0.1		94.8±0.1	93.8±0.2	79.1±3.1
			Lipschitz Re	g. (PR,	Best	96.2		95.2	93.4	85.0
			2023) Miao, et al.		Last	95.7		94.8	93.1	84.3
			Bayesian		Best	96.39±0.06	9	95.68±0.09	95.25±0.08	94.46±0.15
			DivideMix++	(Ours)	Last	96.13±0.07	9	95.40±0.11	94.97±0.02	94.20±0.12

¿What makes NNs so popular?

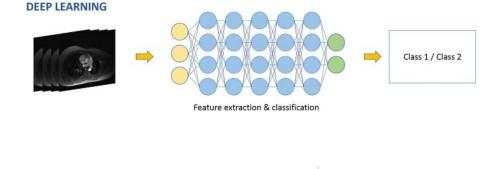
Advantages:

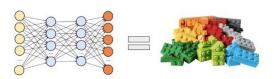
1. End-to-end learning



2. Modularity

3. Transfer learning





Imagine...

Henry Roth is a man afraid of commitment

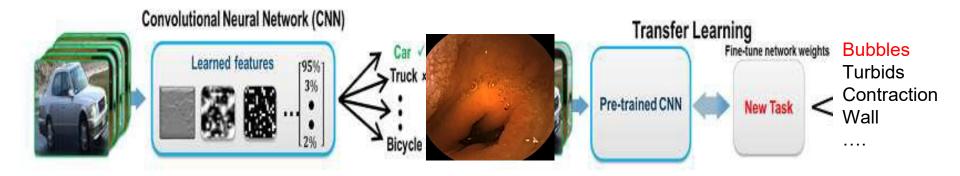
until he meets the beautiful Lucy.

They hit it off, and Henry thinks he's finally found the girl of his dreams.

Until he discovers:

she has short-term memory loss and forgets him the next day.

Transfer Learning and Fine-tuning

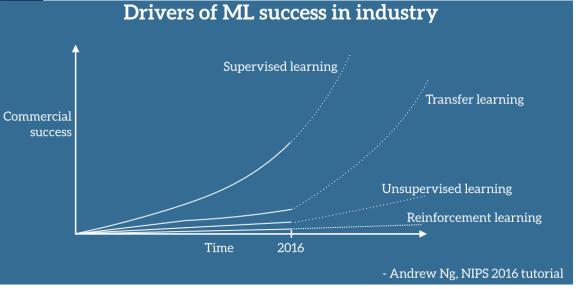


Training data	1000s to millions of labeled images	
Computation	Compute intensive	
Training Time	Days to Weeks for real problems	
Model accuracy	High (can over fit to small datasets)	

	to 1000s of labeled images (small)
Computation Mode	rate computation
Training Time Secon	nds to minutes
Model accuracy Good	, depends on the pre-trained CNN model

Example of Fine-tuning

Andrew Ng, chief scientist at Baidu and professor at Stanford



https://ruder.io/transfer-learning/index.html#fn44

The problem: A tale about machine learning

Once upon a time, a lot of data was collected.

That data was fed into a huge machine learning model.

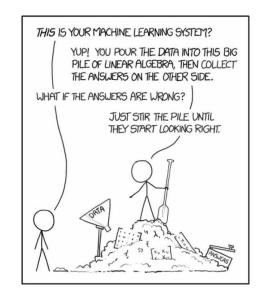
The model was then able to properly process the data, and

when new similar data arrived at the model, it can correctly handle it.

What's wrong with this?

Nothing! It's just how machine learning works!

And it works wonderfully!



The problem: The antagonists of the tale

- ...a lot of data was collected is it always possible?
 - How to store it?
 - What about training time?
 - What if I don't want to wait until I collected a lot of data?
 - When some data is a lot? When some data is sufficient?

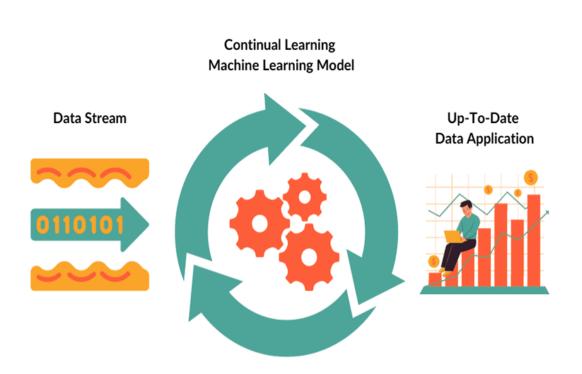
- ...when new similar data arrived at the model, it can correctly handle it...
 - What if dissimilar data arrives at the model?
 - What if I want to adapt the model to new data?
 - What if data changes over time?
 - What if I want to continually train the model?

Continual learning

Continual Learning aims to enable the model to learn continuously from new data streams, making the **process more efficient and scalable**.

Training from scratch, every time new data arrives, is costly

Privacy concerns may make old data inaccessible



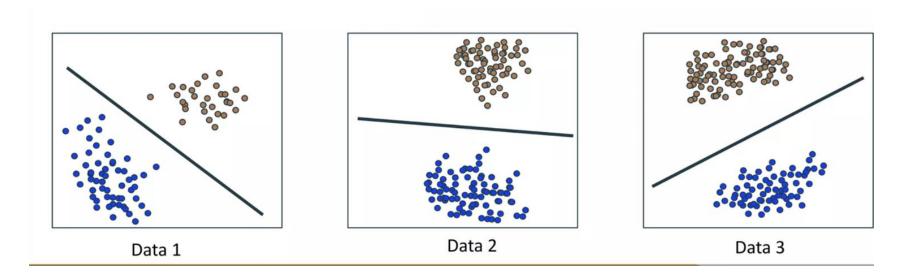
The main villain of ML: catastrophic forgetting

- Catastrophic interference, also known as catastrophic forgetting,
 - is the tendency of an NN to completely and abruptly forget previously learned information upon learning new information.
 - This holds for all the ML models that are trained using "greedy" algorithms (e.g. SGD, CART...)

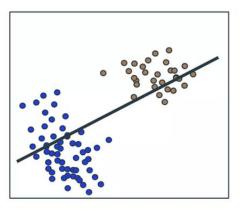
- The training algorithm optimizes the parameters of the model using the currently available data,
 - past data and past knowledge are not taken into consideration.

Catastrophic Forgetting: an example

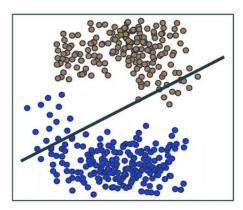
 You collect some data from the real world, and after each collection phase you train the model (only on the lastly collected data) to classify it in two classes:



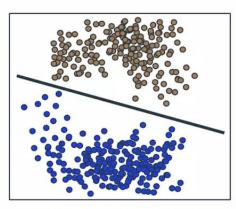
 You collect some data from the real world, and after each collection phase you train the model (only on the lastly collected data) to classify it in two classes:



Final solution on data 1

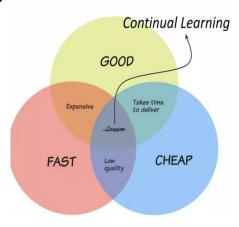


Final solution on all data

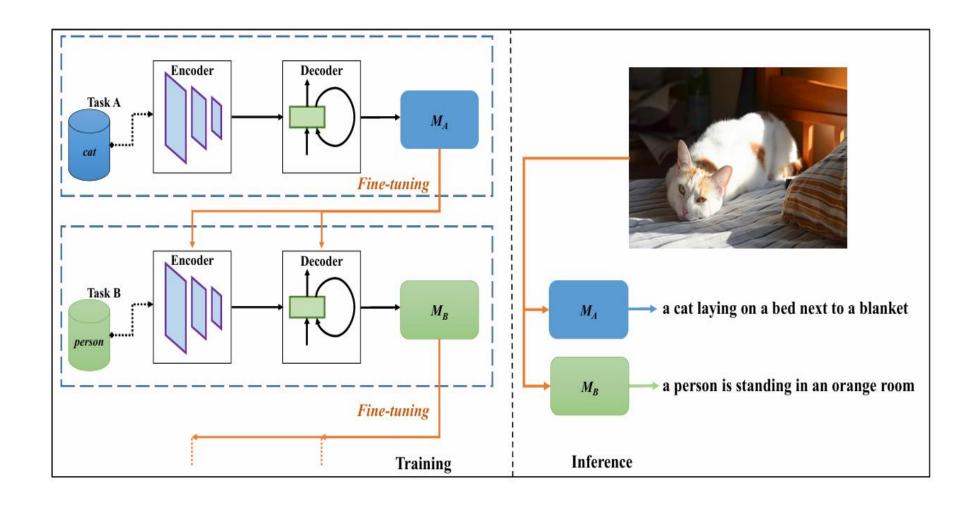


Optimal final solution

- Continual learning a scenario when we do not have all the data at once, but we discover new data as time progresses.
 - The data we discover may not be a good approximation for the total data distribution.
- Other constraints:
 - Every time new data arrives the model needs to be updated
 - The model update should be fast enough to be used before new data arrives
 - Past knowledge must not be forgotten (at least not catastrophically)

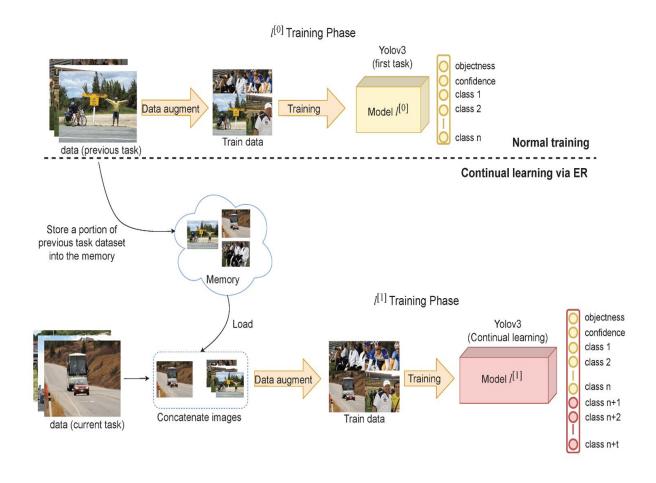


Catastrophic Forgetting in Continual Learning 7



Replay-based as an effective strategy to retain prior knowledge

Replay-based CL approaches retain previous knowledge by maintaining and revisiting a small buffer.

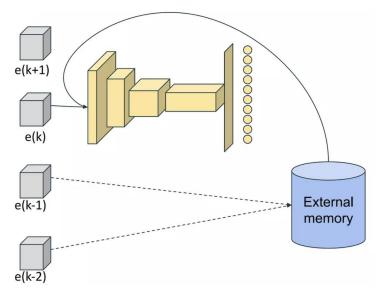


Pro:

- Catastrophic forgetting highly reduced.
- Simple and easy to implement strategy.
- Memory is cheap and abundant.

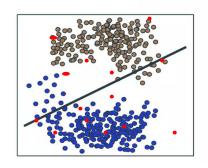
Cons:

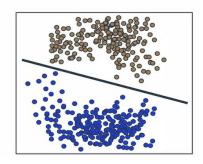
- External memory
- Memory is not infinite (the stream of experience can be infinite).
- What about privacy and private data?
- Not biologically plausible.
- Computation



Random Selection vs Uncertainty

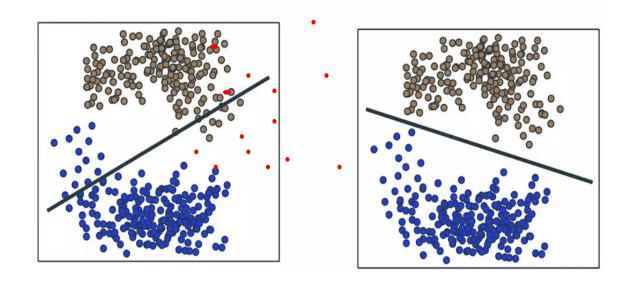
But.... which data to retain?



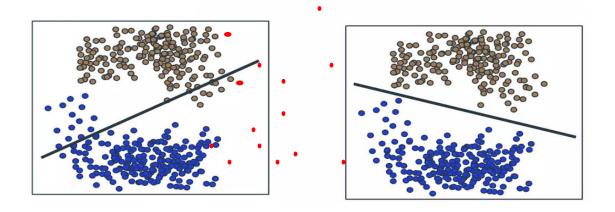


The simplest method Random Selection, continuous to be the one commonly chosen in CL

- Still? Completely random?
- Uncertainty-based approaches have proven very effective in improving the understanding of the DL models
- Data with high epistemic uncertainty means being underrepresented



Our hypothesis: the uncertainty score related to each sample may be a good indicator when selecting a suitable example to retain prior knowledge.



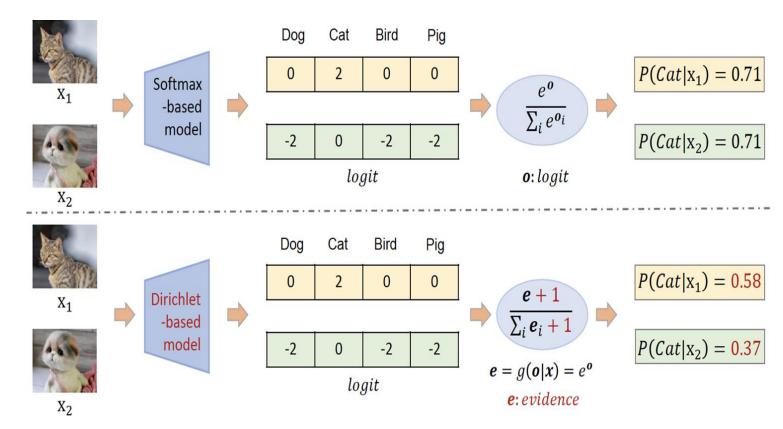
But how to compute the Uncertainty of a predictive model?

- Evidential Deep Learning method

Evidential Deep Learning Framework

Let's a predictive model $f_{\theta}(x_i)$ give the evidence or prediction e_i for a sample x_i , σ is exp().

$$e_i = \sigma(f_{\theta}(x_i))$$

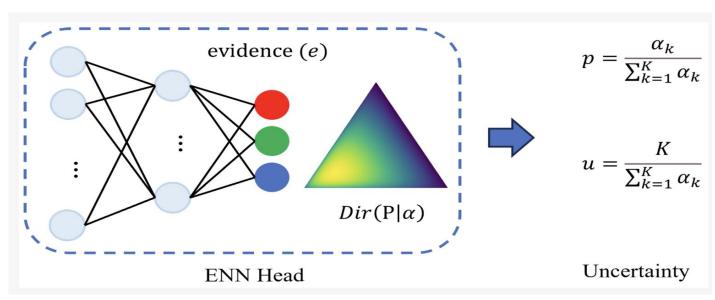


Parameters of a Dirichlet distribution:

$$\alpha_i = e_i + 1$$
.

Dirichlet strength (belief):

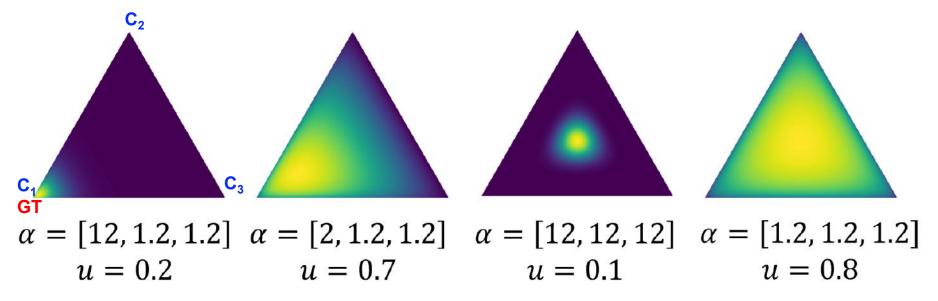
$$S_i = \sum_{i=1}^K \alpha_{ij}$$
 K is the number of classes.



Aguilar, E., Raducanu, B., Radeva, P., & van de Weijer, J. (2025). CEDL+: Exploiting evidential deep learning for continual out-of-distribution detection. *Expert Systems with Applications*, 127774.

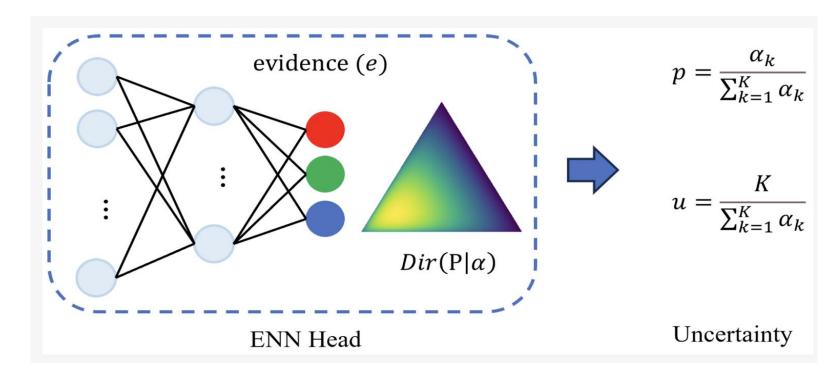
Uncertainty:

$$u = \frac{K}{\sum_{k=1}^{K} \alpha_k}$$



Accurate & certain, Accurate & uncertain,

Inaccurate & certain, Inaccurate & uncertain



$$S_i = \sum_{j=1}^K \alpha_{ij}$$

$$L_i = \sum_{i=1}^K y_{ij} \times (log(S_i) - log(\alpha_{ij}))$$

Regularization term controls the evidence of misclassified samples:

$$\alpha_{KL_{ij}} = e_{ij} \times (1 - y_{ij}) + 1; \quad S_{KL_i} = \sum_{j=1}^{K} \alpha_{KL_{ij}}$$
$$KL_{1_i} = \ln \frac{\Gamma(S_{KL_i})}{\Gamma(K)} - \sum_{j=1}^{K} \ln \frac{\Gamma(\alpha_{KL_{ij}})}{\Gamma(1)}$$

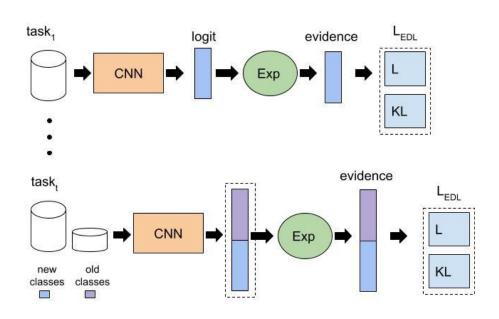
$$\Gamma(n) = (n-1)!$$

$$KL_{2_i} = \sum_{j=1}^K (\alpha_{KL_{ij}} - 1) \times (\frac{\Gamma'(\alpha_{KL_{ij}})}{\Gamma(\alpha_{KL_{ij}})} - \frac{\Gamma'(S_{KL_i})}{\Gamma(S_{KL_i})})$$

$$KL_i = KL_{1_i} + KL_{2_i}.$$

https://statproofbook.github.io/P/dir-kl.html

Continual Evidential Deep Learning Framework



Evidential DL loss

$$L_i = \sum_{j=1}^{K} y_{ij} \times (log(S_i) - log(\alpha_{ij}))$$

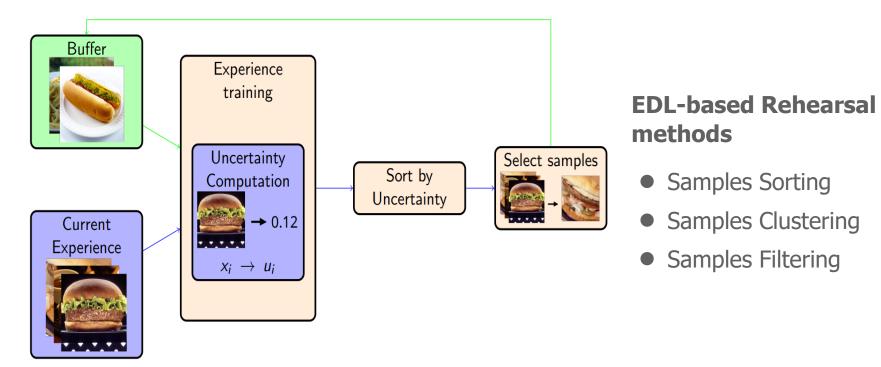
Missclassified KL loss

$$KL_i = KL_{1_i} + KL_{2_i}.$$

Total EDL loss:

$$L_{EDL_i} = (1 - \lambda) \times L_i + \lambda \times (C_{ann} \times KL_i).$$

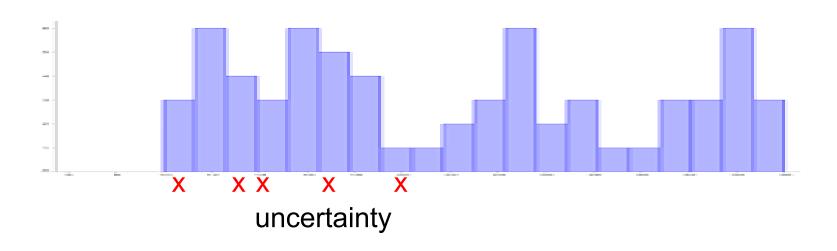
Uncertainty-based Selection Methodology



Aguilar, E., Raducanu, B., Radeva, P., & van de Weijer, J. (2025). CEDL+: Exploiting evidential deep learning for continual out-of-distribution detection. *Expert Systems with Applications*, 127774.

Methodology - EDL-based Rehearsal methods

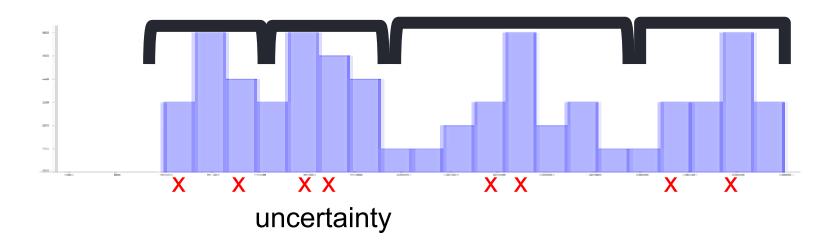
• Samples Sorting: Sort the samples according to their uncertainty and select those with the lowest uncertainty.



Aguilar, E., Raducanu, B., Radeva, P., & van de Weijer, J. (2025). CEDL+: Exploiting evidential deep learning for continual out-of-distribution detection. *Expert Systems with Applications*, 127774.

Methodology - EDL-based Rehearsal methods

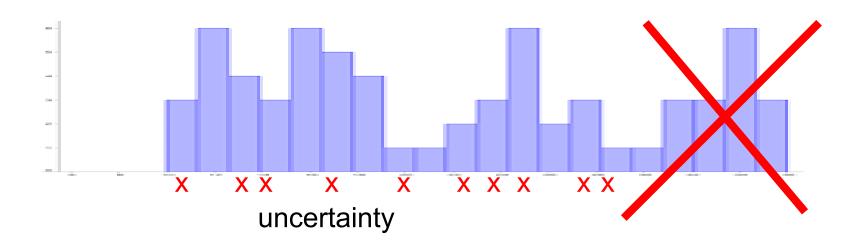
Samples Clustering: apply K-Means, select randomly (*Kmeans random*) within each cluster or according to their proximity to the median (*Kmeans median*).



Aguilar, E., Raducanu, B., Radeva, P., & van de Weijer, J. (2025). CEDL+: Exploiting evidential deep learning for continual out-of-distribution detection. *Expert Systems with Applications*, 127774.

Methodology - EDL-based Rehearsal methods

 Samples Filtering: eliminate the samples with the highest uncertainty and choose the samples randomly (Filtered random) or by means Kmeans random (Filtered Kmeans).



Aguilar, E., Raducanu, B., Radeva, P., & van de Weijer, J. (2025). CEDL+: Exploiting evidential deep learning for continual out-of-distribution detection. *Expert Systems with Applications*, 127774.

Experimental design

Datasets:

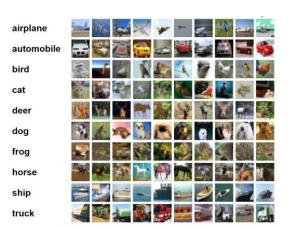
- CIFAR10
- CIFAR100
- FOOD101

Model:

• ResNet-18

Training parameters:

Dataset	Epochs	Increments	Base
CIFAR10	10	2	2
CIFAR100	50	20	20
FOOD101	120	20	21



Experiments - Evaluation Metrics

Final Accuracy

$$Acc_{i}^{j} = \frac{TP_{i}^{j} + TN_{i}^{j}}{TP_{i}^{j} + TN_{i}^{j} + FP_{i}^{j} + FN_{i}^{j}}$$

First Experience Classes Final accuracy

$$AccFinal = Acc_{1,...,nE}^{nE}; \quad Acc1st = Acc_{1}^{nE}$$

Forgetting

Example:

T1 T2 T3 T4

1 step: 80

2 step: 75 85

3 step: 72 80 90

4 step: 70 80 80 85

Accfinal =(70+80+80+85)/4=78,75 Acc1st=(80+85+90+85)/4=85 Forgetting=Acc1st-Accfinal=85-78,75=6,25

Forgetting =
$$\frac{1}{nE} \sum_{i=1}^{nE} Acc_{exp_i} - Acc_{final_i}$$

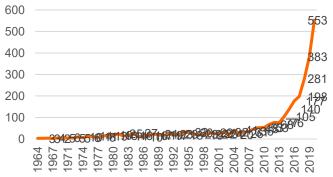
Results - Baseline comparison

Dataset	Strategy	$AccFinal \uparrow$	$Acc1st \uparrow$	Forgetting \downarrow
CIFAR10	Random EDL	0.8927 ± 0.0275	0.8575 ± 0.0910	0.0571
	Filtered Random	0.8975 ± 0.0113	0.8653 ± 0.0842	0.0531
CIFAR100	Random EDL	0.5544 ± 0.0112	0.4824 ± 0.0491	0.2856
	Filtered Random	0.5670 ± 0.0127	0.5241 ± 0.0374	0.2739
FOOD101	Random EDL	0.4855 ± 0.0353	0.4491 ± 0.0261	0.3311
	Filtered Random	0.5076 ± 0.0164	0.4795 ± 0.0407	0.2898

What application do we consider?

Food recognition popularity

Number of Food recognition papers



iFood 2011 fine-grained (prepared) food categories with 135733

AlCrowd: 26000 annotated segmented images

<u>LargeFineFoodAI</u>: 1,000 fine-grained food categories and over 50,000 images.

MetaFood CVPR Workshop, 20 scenes, 5K images 13:46

Data-centric Food image analysis

Uncertainty modelling

Large-scale Food recognition

Fine-grained Food recognition

Food image analysis

Self-supervised Learning

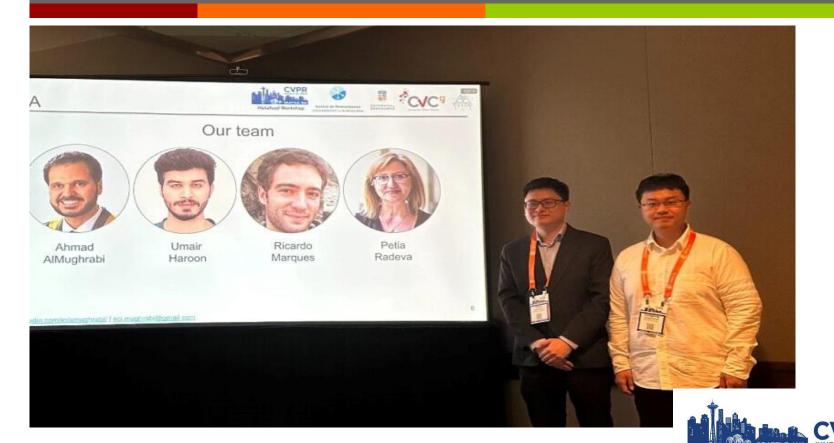
Learning with Noisy Labeling Food recognition

Generative AI for Food Volume Estim

Food ontology-based Deep learning

Food Volume Estimation

CVPR MetaFood Workshop Challenge

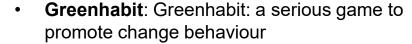


The challenge aimed to advance the food vision community by focusing on 3D food analysis, specifically nutrition intake monitoring through volume estimation. The winners were revealed on June 17th, 2024

Success cases: European projects

Validity: FOOD intake monitoring of kidney transplant patients

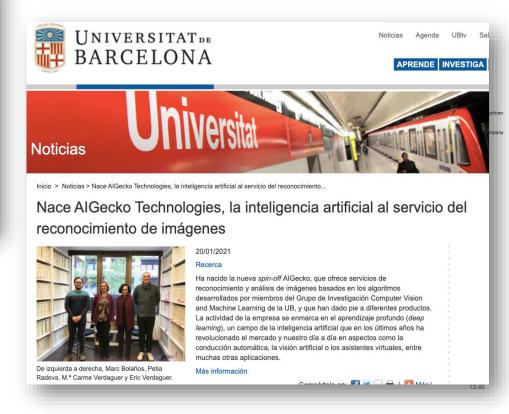
Nestore: FOOD intake monitoring for malnutrition prevention in elderly



Diacare: mHealth app to assist diabetic patients

Success story: Aigecko Technologies

API and APP that allows food recognition (ready meals and food) using Artificial Intelligence algorithms from just a photo



Conclusions

- Learning with Noisy Labelling based on Prompt Learning and class-conditional estimation improves the SoA
 - Division of clean-noisy samples central to any LNL sample selection algorithm
 - **CCLM uses local class division** of clean and noisy samples
 - Bayesian DivideMix proposes an elegant uncertainty-aware framework into the decision-making process
- Food recognition is a perfect test domain for powerful Machine/Deep Learning models
- Food Image Analysis is highly underexplored problem that could convert in an important **benchmark** for CV algorithms.
- **Continual learning** an important field to assure robust transfer learning without forgetting
- Multiple other CV problems are highly relevant for food image analysis
- Multiple real applications and professional opportunities

^{1.} Bhalaji Nagarajan*, Ricardo Marques*, Marcos Mejia, and Petia Radeva. "Class-conditional Importance Weighting for Deep Learning with Noisy Labels." VISAPP, 2022.

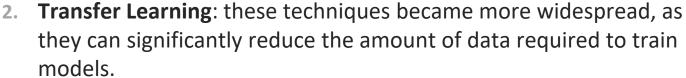
^{2.} Albert Tatjer*, Bhalaji Nagarajan*, Ricardo Marques, and Petia Radeva. "CCLM: Classconditional Label Noise Modelling." IbPRIA, 2023, Best paper award.

Albert Tatjer*, Bhalaji Nagarajan*, Ricardo Marques, and Petia Radeva. "Decoding Class Dynamics in Learning with Noisy Labels." Pattern Recognition Letters, 2024..

Bhalaji Nagarajan, Ricardo Marques, Eduardo Aguilar, and Petia Radeva. "Bayesian DivideMix++ for Enhanced Learning with Noisy Labels." Neural Networks, 2024. 5. Aguilar, E., Raducanu, B., Radeva, P., & van de Weijer, J. (2025). CEDL+: Exploiting evidential deep learning for continual out-of-distribution detection. Expert Systems with Applications, 127774.

Is everything in DL done?

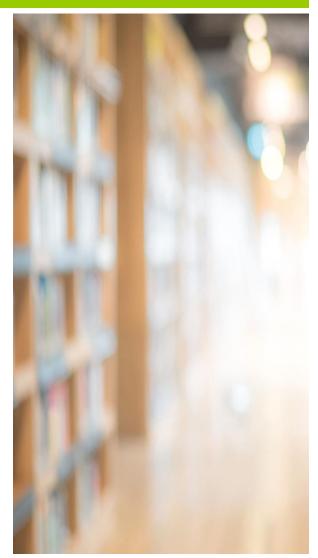
- 1. Multimodal Learning: Combining different sources (text, images) to create comprehensive models for understanding and generating content.
 - LLM and VLM for Dataset generation
 - Ontology-driven Deep Learning



- Multi-task learning, Continual learning
- 3. Uncertainty modeling: refers to the process of quantifying and managing uncertainty or ambiguity in the predictions or decisions made by ML models
 - Uncertainty-aware MTL, Learning with noisy labeling
- **4. Self-Supervised Learning**: methods train models on unlabeled data, which can be particularly useful in cases where labeled data is scarce.

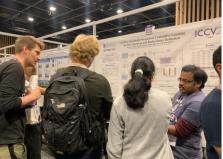
Trends in DL

- **5. Efficiency and Model Compression**: growing interest in making DL models smaller, faster, and more energy-efficient.
 - Efficient learning based on low-rank models
 - Scaling by hierarchical DL models
 - Fine-grained recognition
 - **6. Generative AI**: GANs are used extensively, from image generation to data augmentation and domain adaptation.
 - Uncertainty-aware data augmentation, NeRFs, Adversarial attacks
- **7. Explainable AI (XAI)**: The need for understanding and interpreting deep learning models became more critical, especially in fields like healthcare.
 - Robust Explainable models
- **8.** Al Applications (Healthcare, Transport, Smart city, Stock market, etc): e.g. computer-based medical image analysis, drug discovery, and patient diagnosis, with a focus on improving healthcare outcomes.



Are synthetic data always good?

Thank you!



ITAT DE LONA

EVIA2025