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Next step: robots in our daily lives



People Perception



Haru (春): 
Tabletop Social 
Robot
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• A method to integrate global 
features into a unified view of the
persons in the scene
• Combination of multi-modal 

global features employing vision
and sound
• Extensible data fusion

architecture based on a cascaded
of filters and pipelines
• Computation of contextual 

features, like proxemics and F-
formations
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Multi-Modal People Fusion

Ragel, Ricardo, et al. "Multi-modal Data Fusion for People 
Perception in the Social Robot Haru." International Conference on
Social Robotics. Cham: Springer Nature Switzerland, 2022.



Multi-Modal People Fusion



F-formations classification



People detection with knee-high 
2D LiDAR
• Motivation: Low cost + Ubiquity of 2D LiDAR
• Input data: Range data vector (1D, distance in meters for each angle)
• Challenges: Few datasets, complex problem, non-deep processing
• UPO developed dataset: FROG – Real Alcázar de Sevilla



People detection with knee-high 
2D LiDAR



People detection with knee-high 
2D LiDAR
• UPO end-to-end models:
• People Proposal Network

Inspired by Faster-RCNN/YOLO
• Laser Feature Extractor

Used as LFE backbone, 
segmentation



People detection with knee-high 
2D LiDAR

Fernando Amodeo, Noé Perez-Higueras, Luis Merino, Fernando Caballero, FROG: 
A new people detection dataset for knee-high 2D range finders, 2023
https://github.com/robotics-upo/2DLaserPeopleBenchmark
https://arxiv.org/abs/2306.08531

https://github.com/robotics-upo/2DLaserPeopleBenchmark
https://arxiv.org/abs/2306.08531


Context 
Estimation





NHoA

• Goal: Automatic scene
description by social 
robots
• Motivation:

• Description of scenes for
visually impaired

• Feeding robot knowledge
bases for semantic
perception



Existing work

• Datasets:
• Visual Relationship Dataset (VRD)
• Visual Genome (VG) and its many

derivatives
• Models: VRD-RANS, VR-LP, VTE, IMP, 

Motifs, …

• Problems:
• Biased, noisy, overly general datasets
• Unrealistic images



Qualitative tests



Main proposals

• Specific Idea: Design and train a scene graph generation ML model
taking into account domain specific information
• Prior domain knowledge: Ontology
• Datasets:
• Filter and preprocess an existing dataset using ontology✔

• Process:
• Adapt and reimplement an existing model architecture✔
• Filter impossible outputs according to ontology✔

Fernando Amodeo, Fernando Caballero, Natalia Díaz-Rodríguez, Luis Merino (2022) OG-SGG: Ontology-Guided Scene Graph Generation. A Case Study in Transfer Learning for
Telepresence Robotics. ArXiv
https://github.com/robotics-upo/og-sgg

https://github.com/robotics-upo/og-sgg


Main proposals

Fernando Amodeo, Fernando Caballero, Natalia Díaz-Rodríguez, Luis Merino (2022) OG-SGG: Ontology-Guided Scene Graph Generation. A Case Study in Transfer Learning for
Telepresence Robotics. ArXiv
https://github.com/robotics-upo/og-sgg
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Test dataset: TERESA
• Scenario: Telepresence robot for elderly care
• Simple ontology
• Domain/Range restrictions, 

Inverse/Functionality/Transitivity/etc
• 25 images
• Object/predicate annotations (with help from

ontology)



Quantitative tests

Notice that the test set is 
completely different from the 

training set!



Qualitative tests



Human-aware navigation



• Encoding social norms into path/motion planners
• Social navigation tasks are easier to demonstrate than formalise
• Given demonstrations by humans: Learning by Demonstration

Human-aware path planning



• Inverse Reinforcement Learning (IRL) approach

• Given successful demonstrations, estimate cost function thee 
demonstrator is minimising

Learning navigation cost 
functions from demonstrations
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• Initial formulations using discrete Markov Decision Processes (MDPs) as 
planners
• MDPs defined by the tuple <S,A,T,R>:
• S: state space
• A: action space
• T: transition function, T(x’,a,x)=p(x’|x,a)
• R: reward (cost) function, R(x,a)

• Solving a MDP is finding a policy p*(x) that maximizes (minimizes) 
cumulative reward (cost)

Inverse Reinforcement 
Learning



• IRL as an “incomplete” MDP, <S,A,T>
• Given a set of demonstrations by an expert, determine the cost 

(reward) function used by the demonstrator
• Cost function as a linear combination of features:

Inverse Reinforcement 
Learning





• IRL as an “incomplete” MDP, <S,A,T>
• Given a set of demonstrations by an expert, determine the cost 

(reward) function used by the demonstrator 
• Cost function as a linear combination of features:

• Determine weights so that the planner returns the same features as 
the demonstrations in expectation (Abbeel and Ng, 2004)

Inverse Reinforcement 
Learning





• Challenges:
• Expert suboptimal

•Maximum Entropy Assumption (Ziebart et al., 2008)
• Probability distribution on paths that does not exhibit any 

additional preference except feature expectation

Maximum Entropy Inverse 
Reinforcement Learning



• Discretization
• Scalability with the state space
• It renders difficult to include new information about the problem
• For instance, reasoning about static obstacles, goals, etc

• However, good motion planners available (RRT* for instance)
• They reason about obstacles, they can reason about dynamics and kinematics 

of the robot, etc

Issues with discrete MDP-
based IRL 



IRL-RRT*

Successful
Demonstrations

RRT* motion
planner
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Trajectories



• Maximum Entropy IRL for continuous spaces (Kretzschmar et al., 
2014)

• Determine the weights that maximize the (log-)likelihood of the 
demonstrations

• The gradient is given by:

Learning from demonstrations 
with RRT*



• Problem: evaluate the expected feature counts

• Approximate it by the features of the best RRT* trajectory (minimum cost)

• RRT* is asymptotically optimal: 
• Run several iterations to account for variations

Learning from demonstrations 
with RRT*



Learning from demonstrations 
with RRT*



Learning from demonstrations 
with RRT*



Learning from demonstrations 
with RRT*

Path comparison Trial 1, Scenario 7
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Path comparison Trial 3, Scenario 4
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Noé Pérez-Higueras, Fernando Caballero, and Luis Merino. Teaching robot navigation behaviours to optimal RRT planners. In International 
Journal of Social Robotics, 2018.
https://github.com/robotics-upo/upo_nav_irl

https://github.com/robotics-upo/upo_nav_irl


• Demonstrations: human navigation datasets
• ETHZ BIWI Walking Pedestrians dataset

Scenario DS1 Scenario DS2



Applying IRL to human-aware 
motion planning



Features for social navigation
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• Using Deep Networks for path planning directly from sensor input
• Path planning as a classification problem
• Use a Fully Convolutional Network (FCN) to directly predict the path given an 

scenario

Using Deep Networks to Learn 
Human-Aware Path Planning



Using Deep Networks to Learn 
Human-Aware Path Planning



FCN input:

- 200x200 px
- res: 0.05 m/px
- Robot-centered

OBSTACLES 
(Laser readings)

GOAL

PEOPLE
(position and 
orientation)

Using Deep Networks to Learn 
Human-Aware Path Planning



Using Deep Networks to Learn 
Human-Aware Path Planning

Labels for training:

- 200x200 px
- res: 0.05 m/px
- robot-centered

ROBOT 
POSITION

(centered looking 
to the right)

GOAL POSITION

PATH TO GOAL



Using Deep Networks to Learn 
Human-Aware Path Planning

Training

Scene Inputs

Plan output

Labels

FCN

Error

Update
weights



FCN architecture



Validation of the FCN



Validation of the FCN

N. Pérez-Higueras, F. Caballero and L. Merino, Learning Human-
Aware Path Planning with Fully Convolutional Networks. In 
Proceedings of the IEEE International Conference on Robotics and 
Automation, ICRA, 2018

https://github.com/robotics-upo/upo_fcn_learning
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https://github.com/robotics-upo/upo_fcn_learning


Robot Expressivity



• amused_3
• cheerful_3
• curious_3
• grumpy_3
• guilty_3
• sympathetic_3
• worried_3
• amused_7
• cheerful_7
• guilty_7
• sympathetic_7

Haru’s Expressivity

● worried_7
● amused_10
● cheerful_10
● curious_10
● ecstatic_10
● guilty_10
● listening_10
● sympathetic_10
● listening_0
● listening_1
● listening_2

● thinking_0
● thinking_1
● thinking_2
● waking_up_1
● waking_up_2
● grumpy_7



• Given animations designed to convey expressions like agreement or 
disagreement, happiness, sadness or shyness. 
• We consider the question if such animations can be combined so to 

generate automatically expressions like, for instance, a shy disagreement.
• How the motion trajectories should be interpolated: 

• The manifold of motions representing a particular expression is complex.
• Learning approaches can be applied to extract the relevant information, but only a 

handful of animations are available. 

Expressivity through motion



• Each animation includes a demonstrated trajectory:
• Temporal evolution of the 5 degrees of freedom
• Expression
• Intensity

• TP-GMM method (Calinon, 2015) to encode these examples

Encoding the demonstrated
trajectories



Encoding the demonstrated
trajectories

Demonstrated Trajectories

Joint Distribution on Features

Generation of new trajectories

Time instants, Expression, Intensity Position of joints



Wheel of Emotion (Plutchik, 
1980)

Encoding the demonstrated
trajectories



Agree_3

Agree_7

Disagree_3

Disagree_7

Happy_3

Shy_3

Encoding the demonstrated trajectories

Sad_3

Wheel of Emotion (Plutchik, 1980)

Agree-Shy
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Generating Interpolated
Motion

Gonzalo Mier, Fernando Caballero, Keisuke Nakamura, Luis Merino, 
and Randy Gomez. 
Generation of expressive motions for a tabletop robot interpolating 
from hand-made animations. 
In Proceedings of the IEEE International Conference on Robot and 
Human Interactive Communication, RO-MAN, 2019.



• Social robotics require to consider the presence of people as a central 
part of a robot architecture
• Multi-modal perception of people is key
• Pertinent, expressive and legible robot behavior are required
• Data-driven approaches: social behaviors easy to demonstrate than to

formalise

Conclusions and Outlook
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