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n Semi-Supervised Learning
Knowledge Discovery in Databases (KDD)

PROBLEM
SPECIFICATION

DATA

EXTRACTION KDD: a set of stages that enable the

identification of valuable patterns and
KDD process relationships within the data. Our goal
is to extract meaningful insights from
the data.

INTERPRETATION
&
EVALUATION

PREPROCESSING



Semi-Supervised Learning

Classic Machine Learning Paradigms

Supervised Learning: the goal is to build a classifier or regressor that, trained with a set of
examples and their corresponding output values, can predict the value of unseen inputs.

Labeled Dataset Classifier Training Unlabeled Data Predictions
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Semi-Supervised Learning

Classic Machine Learning Paradigms

Unsupervised Learning: only the set of examples is available, and no output value is
provided. The goal here is to discover some underlying structure in the data.

Dataset

Partition

-

Label Mapping

Prototype Generation \




n Semi-Supervised Learning
Semi-Supervised Learning (SSL)
Semi-Supervised Learning: tries to combine the benefits of supervised and unsupervised

learning by making use of both labeled and unlabeled data, or other kinds of expert
knowledge.

Unsupervised Supervised Semi-Supervised
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Semi-Supervised Learning

Assumptions

Smoothness Assumption.
Two instances that are close in the
input space should have the same

label.

Low-density Assumption.
Decision boundaries should
preferably pass through low-density
spatial regions.
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n Semi-Supervised Learning
Assumptions

Manifold Assumption Cluster Assumption
Instances in a high-dimensional input Instances which belong to the same
space are usually gathered along cluster also belong to the same class.

lower-dimensional structures.
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Semi-Supervised Learning
Dichotomy

Inductive Methods: aim to build a
classifier capable of outputting a label
for any instance in the input space. The
predictions for unseen instances are
independent. Inductive methods in SSL
are categorized as semi-supervised
classification.

Unlabeled Data Predictions

O O

Transductive Methods: their predictions
are limited to the data used during the
training phase. Transductive methods do
not have separated training and testing
phases. Transductive methods in SSL
are categorized as semi-supervised
clustering.

Dataset Partition
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Semi-Supervised Clustering

Semi-Supervised Clustering

Semi-Supervised Learning: tries to combine the benefits of supervised and unsupervised
learning by making use of both labeled and unlabeled data, or other kinds of expert knowledge.

Classifi

Supni Semi-Supervised Clustering: in

g A addition to the unlabeled dataset,

g background knowledge is given to

e perform clustering. When the

blechinetesmiog s o background knowledge is given in

the form of constraints, the

i resulting clustering paradigm is

o e = e known as Constrained Clustering
i Learning ¢ ( C C) .
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Semi-Supervised Clustering

Background Knowledge

Background
Knowledge
Partition-level Instance-level Cluster-level Feature-level Distance-level Other
Constraints Constraints Constraints Constraints Constraints Constraints

Background Knowledge can be found in many forms, which can be categorized as follows.
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Background
Knowledge

Background Knowledge

p—

Semi-Supervised Clustering

()
Partition-level

;{ Subset of labels ]

Constraints
e ——

4 N

Instance-level

Constraints

. 7

a2 N

Cluster-level

Constraints

\ 7

Feature-level
Constraints

\ 7

Distance-level
Constraints

\ 7

Other
Constraints

7

;{ Subset of fuzzy labels ]

:{ Non-redundant fuzzy constraints ]

Partition-level constraints refer to restrictions
imposed on the partition generated by the
semi-supervised clustering algorithm. Their most
common form is a subset of labeled data.
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Semi-Supervised Clustering

Background
Knowledge

Background Knowledge

Partition-level

Constraints

Instance-level

Membership degree constraints ]

Neighborhood constraints ]

-—)[ Single instance constraints

Difficulty Constraints |

Coverage Constraints ]

v—)[ Must-link/Cannot-link constraints ]

-—)[ May-link/May-not-link constraints ]

Constraints
\ SR

Cluster-level

Constraints

Feature-level

Constraints

i

Distance-level

Constraints

i

Other

~>{ Pairwise constraints ]—4—)[ Fuzzy Must-link/Cannot-link constraints ]

—)[ Elite Must-link/Cannot-link constroints]

—)[ Ranking constraints ]

’—>[ Group constraints ]

Constraints
S —

-—)[ Triplet constraints ]

—)[ Must-link before Constraints ]

—)[ Groupwise constraints ]—1

—)[ Mutual relationships ]

Instance-level constraints can refer to single instances, pairs of

instances or groups of multiple instances.
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Semi-Supervised Clustering

Background
Knowledge

Background Knowledge

Partition-level

Constraints
R

Instance-level

Membership degree constraints ]

Neighborhood constraints ]

-—)[ Single instance constraints

Difficulty Constroints]

Coverage Constraints ]

—)[ Must-link/Cannot-link constraints ]

—)[ May-link/May-not-link constraints ]

Constraints
| —

Cluster-level

Constraints
—

Feature-level

Constraints

i

Distance-level

Constraints

i

Other

Constraints

~>{ Pairwise constraints ]—4—)[ Fuzzy Must-link/Cannot-link constraints ]

—)[ Elite Must-link/Cannot-link constroints]
—>[ Ranking constraints ]
—)[ Group constraints ]

-—)[ Triplet constraints ]

—ee e/

—>[ Groupwise constraints H

—)[ Must-link before Constraints ]

—)[ Mutual relationships ]

In the case of single instance constraints, they are used to
describe particular features of said instances or to restrict the
features of the cluster they can belong to.

2/51



Semi-Supervised Clustering

Background Knowledge

Partition-level

Constraints

Instance-level

Membership degree constraints ]

Neighborhood constraints ]

-—)[ Single instance constraints

Difficulty Constroints]

Coverage Constraints ]

—)[ Must-link/Cannot-link constraints ]

-—)[ May-link/May-not-link constraints ]

Constraints
\ S )
T —
Cluster-level

Background
Knowledge

Constraints
—

Feature-level

Constraints

i

Distance-level

Constraints

i

Other

~>{ Pairwise constraints ]—4—)[ Fuzzy Must-link/Cannot-link constraints ]

—)[ Elite Must-link/Cannot-link constroints]

—)[ Ranking constraints ]

’—>[ Group constraints ]

Constraints
——

-—)[ Triplet constraints ]

—)[ Must-link before Constraints ]

—)[ Groupwise constraints ]—1

—)[ Mutual relationships ]

Instance-level pairwise constraints involve pairs of instances and
are used to indicate positive or negative relationships.
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Semi-Supervised Clustering

Background
Knowledge

Background Knowledge

Partition-level

Constraints
R

Instance-level

Membership degree constraints ]

Neighborhood constraints ]

-—)[ Single instance constraints

Difficulty Constroints]

Coverage Constraints ]

—)[ Must-link/Cannot-link constraints ]

—)[ May-link/May-not-link constraints ]

Constraints
| —

Cluster-level

Constraints
—

Feature-level

Constraints

i

Distance-level

Constraints

i

Other

Constraints

~>{ Pairwise constraints ]—4—)[ Fuzzy Must-link/Cannot-link constraints ]

—)[ Elite Must-link/Cannot-link constroints]
—>[ Ranking constraints ]
—)[ Group constraints ]

-—)[ Triplet constraints ]

—ee e/

—>[ Groupwise constraints H

—)[ Must-link before Constraints ]

—)[ Mutual relationships ]

Group constraints are used to gather group of instances that are
known to share features or to be different to each other in
some aspect of their nature.
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Semi-Supervised Clustering

Background Knowledge

—>

Portition_[eve[] Size constraints constraint the number of instances that
S clusters can have in the output partition.

” r—>[ Cluster-size constraints ]

\
N Instance-level
Constraints ,—)[ Size constraints } :{ Minimum/Maximum cluster-size constroints]

\ )
—>[ Balance constraints ]

(- ) -
3 Cluster-level —)[ Cluster overlap constraints ]

Constraints
Background ‘ 7 -—)[ Property-cardinality constraints ]
Knowledge

—)[ Soft cannot-link inside constroints]

r ")

N Feature-level
Constraints ‘P[ Feature Constraints ]—4—)[ Minimum difference constraints ]

\. J

—>[ Variance constraints ]

—>[ Maximum diameter constraints ]

X
Distance-level
— .
Constraints
. —>[ Encompassing constraints ]

2/51
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[ —— ] Feature constraints restrict a wide variety of cluster features.




Semi-Supervised Clustering

Background Knowledge
O
> Pgrtition-'level - - -
eliserallys Feature-Level: constraint instances by their feature
values or directly relate pairs of feature to each other to
indicate degrees of importance.

O —
Instance-level
—>

Constraints
—

Distance-level: as they relate pair of instances indirectly
and in a global way.

Cluster-level
Constraints
Background N ————
Knowledge
G :{ Attribute-level constraints ]
) Feature-level |
Constraints 1 (
;l Feature order constraints ]

Distance-level | JEcenstoints ]

Constraints 1

e-constraints ]

» Bag constraints ]

Other
Constraints

:{ Example clusters ]

11

:{ Hierarchical cluster-level constraints ]
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Semi-Supervised Clustering

Equivalencies

Maximum
diameter
constraints

Neighborhood
constraints

Subset of
labels

Must-link/
Cannot-link
constraints

May-link/
May-not-link
constraints

Group
constraints

Ranking
constraints

Subset of
fuzzy labels

Balance
constraints

Fuzzy
Must-link/

Cannot-link
constraints

Membership
degree
constraints

Cluster-size
constraints
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Semi-Supervised Clustering
Must-link & Cannot-link

Single instance constraints

Must-link/Cannot-link constraints

-
Partition-level
Constraints

\

May-link/May-not-link constraints

Constraints

,
B Instance-level ]—1 Pairwise constraints Fuzzy Must-link/Cannot-link constraints

\,

Elite Must-link/Cannot-link constraints

4 N

> Cluster-level

Ranking constraints

Constraints
Background ] . <
Knowledge J ) Groupwise constraints
> Feature-level
Constraints ] . . .
- . Must-Link (ML) constraints: involve pairs of
. . instances that belong to the same (but unknown)
Distance-level
P Constraints class.
\ J

g

Cannot-Link (CL): involve pairs of instances that do
not belong to the same class.

Other

Constraints
\_ )
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Semi-Supervised Clustering

Instance-level Pairwise Constrained Clustering (CC)

The goal of constrained clustering is to find a partition of the dataset that ideally meets
all constraints in the union of both constraint sets.

Must-Link Must-Link

~ - : - = = = Cannot-Link /:vo g : - = = = Cannot-Link
\ \\:@ 5 @ s T
-~
o ~ -’ - .
Constrained
@ @ @ Clustering . 2% o /ws
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Semi-Supervised Clustering

The Infeasibility

The infeasibility refers to the number of constraints broken by a given partition.

Must-Link
----- Cannot-Link

Infs(C,CS) =0

Infs(C,CS) = Z
C=(xj,x;)ECS

Must-Link
----- Cannot-Link
g ~ -~
el
) N

-~

Ty S~ o

~ < 7

~ % P -

b -

1[I #15] +

Infs(C,CS) =2

2 AlF

C;,,g(xl',Xj)ECS



. Semi-Supervised Clustering

The Feasibility Problem
How do constraints affect the complexity of clustering? Intuitively, the clustering
problem goes from its classic formulation “find the best partition for a given dataset” to

its constrained form “find the best partition for a given dataset satisfying all
constraints in the constraint set”.

In partitional CC the number of In hierarchical CC the full
clusters is bounded and fixed. dendrogram is available.

Must-Link '
----- Cannot-Link i '
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Semi-Supervised Clustering

The Complexity of the Feasibility Problem

Partitional CC is NP-Complete — It can be reduced from the Graph K-Colorability
problem.

Hierarchical CC is NP-Complete — It can be reduced from the One-in-three 3SAT with
positive literals problem.

Constraints Partitional CC  Hierarchical CC Dead Ends?

ML P P No
CL NP-complete NP-complete Yes
ML and CL  NP-complete NP-complete Yes

Knowing that a feasible solution exists does not help us find it. /
6/51



Semi-Supervised Clustering

Hard Constraints VS. Soft Constraints

Hard Constraints

Must-Link
----- Cannot-Link

Infs(C,CS) =07

Soft Constraints

Must-Link
----- Cannot-Link

Infs(C,CS) =0?2¢Infs(C,CS) =12

Soft constraints are resilient to noise, and allow for flexibility in the cost/objective
function and in the optimization procedure.
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Constrained Clustering

Taxonomic Tree

| Constrained |

[ Constrained Clustering J

]

| Partitional l

[ Metaheuristic-based

CC [MbCC]

HA

Latent Space CC
[LSCC]

]

Multi-view CC
[MVCC]

o

Neural Network-based
CC [NNbCC]

)

[ Ensemble CC [ECC] ]<->[

Constrained
K-Means [CKM]

Active CC [ACC] ](-

‘-)[ Kernel CC [KCC] ]

Y

[
J 1

A

Y.

[

Mixture Model
-based CC [MMbCC]

[DbCC]

Density-based CC ] [

Others

]

Constrained
DML

Y

[

Constrained Distance
Transformation [CDT]

|

. . Constrained Data
Distance Matrix :
Modification [DMM] ][Spoce Tronsformotlon]

[CDST]

2 Major Categories: Constrained Partitional & Constrained DML.

17 Subcategories: Constrained K-Means, Ensemble CC, Active CC, etc.
29 Final Categories.
307 methods reviewed.
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. Constrained Clustering
Taxonomic Tree

[ Ensemble CC [ECC] ]

: . : f Constrained Data
Constrained Distance Distance Matrix -
[Tronsformotion [CDT] ][ Modification [DMM] ] [Spoce q'ggss%rmotlon]

A4
[ Constrained Pool ][ Constrained

Generation Consensus ][ Full Constrained ]

Some categories are exclusive to CC and are proposed for the first time in this
taxonomization.
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. Constrained Clustering
Taxonomic Tree

Constrained
K-Means [CKM]

v )

Cluster Engine- Penalty-based
adapting Methods Methods

Other categories are exclusive to CC and existed before this
taxonomization.

9/51



. Constrained Clustering
Taxonomic Tree

[ Active CC [ACC] ]

¢ )

[ Active Constraint ] [ Active Clustering ]

Acquisition with Constraints

Other categories are exclusive to CC and existed before this
taxonomization.
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n Constrained Clustering
Experimental elements — Datasets

Most frequent datasets No. of datasets used in experiments
- bl e Classification datasets are used
- as benchmarks, using the
" il . labels as an oracle to generate
-l | il | the constraint sets.
- e Most studies use between 1and
No. of datasets used by year ] )
- _ : 10 datasets in their
experiments.
20-

e The number of datasets used in

’°_____$____ _ %é _ Jé # % _ experiments shows an
| éé@ Q increasing tendency.

ooooooooooooooooooooooo 10/51
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Constrained Clustering

Experimental elements - Methods

COP-K-Means
K-Means
MPCK-Means
SSKK
PCK-Means
KKM

FFQS

Random

Methods

RCA

E*CP

Csi

NCuts
ConstrainedEM
CCSR
HMRF-K-Means

7.5-

5.0-

Count

°

Most frequent methods

2.5-

0.0-

2000" |

2001°

2002°

2003~

2004"

2005~

No. of methods used by year

2006

2007

2008~

2009

2010"

20117

Year

Frequency

20127

2013"

No. of methods used in experiments

2014~

2015"

) No. ;l meﬂ:ods )

2016"

@

2017"

2018~

2019”7

2020"

20217

2022°

Proportion of CC methods
used in experiments

Not used
(158 ~ 51.5%)

Used
(149 ~ 48.5%)
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Constrained Clustering

Experimental elements - Methods

Most frequent methods No. of methods used in experiments

COP-K-Means 64 = P
K-Means 57
40
MPCK-Means 3
SSKK 2
PCK-Means 22
KKM 21
FFQS 17

Random 14

Methods
Frequency

RCA 14

E*CP 13

Csl 13

NCuts 13
ConstrainedEM 12
CCSR 12

HMRF-K-Means " o-

> 3 ) 2 s . o . i . .
Count No. of methods

No. of methods used by year

7.5-

a8l

Count

2.5-

o - o © = 0 © ~ @ @ =) - ] 1) < 10 © ~ © o o - o
1= o 1= 1= =3 =3 =3 =) =3 o = - = - - - - - - - I o o
1= 1=} 1= S 1= =3 1= =1 1= =1 o o o o o o o o o o o o o
« « « ~ « « « « « « « « « « « « « « « « « « «

Year

Type of methods used
in experiments

cC
(149 ~ 38.6%)

Others
(237 ~ 61.4%)
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Constrained Clustering

Experimental elements - Validity Indices

Most frequent validity indices No. of validity indices used in experiments

NMI 89
150-

CE 60

. - Proportion of CC studies
“ using statistical tests

F-measure 38

Time 25 100

Purit 1"
iy Use tests

(16 studies, 5.9%)

Unsat "

Frequency

NS 10

Validity Indices

JC 8
Visual 7
V-measure 4
Precision 4
FMI 3
CRI- 3 .,

4

3 ~ o .
Count No. of validity indices

No. of validity indices used by year

Count

21 ¢ o $
------ ﬁ ﬂ T == o =5 Do not use tests
— = . (254 studies, 94.1%)

.

2006 *

o = o @ =3 [} ~ @ -3 o - ] © <+ 0 © ~ ) o o - o
=3 o =3 1= =3 =} =) =3 =3 = - - - - - - - = - N o o
=3 1= 1= 1<} 1<} S =1 S 1= o o o o o o o o o o o o o
« « « « « « « « « « « « « « « « « « « « « «

Year



Constrained Clustering

Summary Proportion of partitional and Proportion of the types of constraints
DML methods in CC studies used in CC methods

Hybrids
(20 methods, 6.5%) Others
(44 methods, 14.3%)
Constrained DML
(45 methods, 14.7%)

60

53

40

Hard
(39 methods, 12.7%)

20

Categories Intersection Size

11111

Soft
(224 methods, 73%)

14 4 g 1 124 14 1 144 1.4 1454

Constrained Partitional
(242 methods, 78.8%)

3 3
38333 38333 32222

0
12— KCC L4
17 I CDST .
17N NNbCC L)
17 I occ ° I
22 I MVCC o I
23— DbCC ° l
24 I FCC .
2 NN MMbCC i
30 I HCC L4
el _________| CDT e I
37 I ECC e
38 I MbCC ° I
40 I DMM °
46 I CKM .
53 I Others . I I
79 I— LSCC e I I
86 I ACC ° I

No of propéﬂsals per gategory ) 14/51
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Hybrid Models for CC

Constraints Redundancy

Constrained
DML

—

Must-Link

: ----- Cannot-Link
<{Q N
~ s % -
O\s f

—

Constrained
Clustering
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n Hybrid Models for CC
3SHACC - First Stage

Run A over X ~y
times to build
partitions matrix P

Run WLSI over X,
W,C=and Cx to
get metric
matrix M

lterate over P
to compute
constraints

weights matrix W

32/51



n Hybrid Models for CC
3SHACC - Second Stage

Compute pairwise
distances to get
distance matrix D
according to M

Meets Update all rows
convergence from similarity
criterion matrix S

Apply hard
thresholding Induce simmetry Normalize S by the
operator onS lo-norm
H,()to S

The similarity computation is based on the reconstruction coefficient, which computes

similarities in terms of how much an instance is explained by others. /
33/51



Hybrid Models for CC
3SHACC - Third Stage

(
Initialize partition

—>»| (' with singleton

clusters

A

\

J

Meets
Stopping
Criteria

End and
return C

NO

& i
Update partiton C
and affinity
matrix G
L 4
A
P =Y

Select clusters c,
and ¢ using G
and merge them

\. y
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New Paradigms in CC
Types of Background Knowledge

Single instance constraints

4 y
Partition-level

Constraints
\ Y

—>

Must-link/Cannot-link constraints

May-link/May-not-link constraints

( Y
Instance-level
) Constraints

Pairwise constraints Fuzzy Must-link/Cannot-link constraints

\, )
Elite Must-link/Cannot-link constraints
q A
—p %lg’:;f:;lﬁ\ \gl Ranking constraints
Background . / . .
Knowledge Groupwise constraints

4 N
Feature-level

Constraints
\_ )

T There are problems where more than one type of
=] "Constraints background knowledge is available.

\ J

é Y

Other

Constraints
\ )
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New Paradigms in CC

Monotonicity in Classification
Cold
Mild < <
Hot

e There is an order relationship between
classes.

e Our goal is to minimize the number of
misclassifications regarding the class

order.

e The costs of misclassifications are
different for every class.

38/51




New Paradigms in CC
Monotonicity in MCDA

MCDA introduces the concept of preference. The preference quantifies the addition of
differences between the features of two instances, limited to the features in which one of
them is strictly better than the other.

Ts |

g

T3 .

o

Ty
)

Tyq .

@
i < < Tz < o5
N < &9 < (= 6

- Ts

r(xpx) = ), WaX[id] — WaX[jd]
d:X[i,d]>X[},d]

Ll(xia x]) — r(xia x]) i r(xja xi)°
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New Paradigms in CC
PCKM-Mono - Objective Function

An instances is assigned to a cluster if its centroid is the most similar to it in terms of
preference, taking the number of violated constraints into account.

1 K
JpckmMMm = % Zkzl ineck ﬂ(”(xi,/lk) — (i, xi)ﬂ"‘

2ixxece Wi # U]+ 2 v yec, Wi = U]
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New Paradigms in CC
PCKM-Mono - Objective Function

An instances is assigned to a cluster if its centroid is the most similar to it in terms of
preference, taking the number of violated constraints into account.

1 K
JpckmMMm = % Zkzl ineck |(r(x;, i) — r(iag, x)|+

[Z(xl, yec. Wh # 4l + 2y, xpec, Ml = J]H

40/51



New Paradigms in CC

PCKM-Mono - Expectation-Minimization

An instances is assigned to a cluster if its centroid is the most similar to it in terms of
preference, taking the number of violated constraints into account.

argmin, (| Z;l:l(x[i,j] — HUn, DI+
%y carpece R # B + T xoec, 1Hen) = 1)

The centroids must be neutral in terms of preference with respect to all instances in
the cluster.
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New Paradigms in CC
Case of Study

Wi alumni

o ~ o @ m s e
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5 5
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I
a 4
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e 150

e 51-100
e 101-150
e 151-200
e 201-300

301-400
401-500

Shanghai Ranking of World Universities

Clustering problem with  both
monotonicity constraints and
instance-level pairwise constraints.

Features monotonicity faults in 7%
of its instances.
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New Paradigms in CC

Case of Study

Non-Monotonic Index

1.0

0.8

0.6

0.4

0.2

0.0

Comparing NMI

T_.*.TL

Algorithms
COP-Kmeans
P2Clust
PCKM-Mono
PCSKMeans
KMeans

50 75 100 125 150 175 200 225 250

0.7

0.6

0.5

0.4

Adjusted Rand Index

0.8

0.6

Unsat

0.2

0.0

Comparing ARI

Algorithms
COP-Kmeans
P2Clust
PCKM-Mono
PCSKMeans
KMeans

50 75 100 125 150 175 200 225 250
n

Comparing Unsat

L, * 2 2

Algorithms
COP-Kmeans
P2Clust
PCKM-Mono
PCSKMeans
KMeans

—

50 75 100 125 150 175 200 225 250
n

47/51



. Challenges and Frontiers




n Conclusions & Future Work
Future Work

e Creation of a free CC library. The creation of an open-access library specialized in
CC methods would greatly stimulate research in the area.

e Constraint-based preprocessing. We argue that constraints can be beneficial in
preprocessing procedures.

e Preprocessing the constraint set. As the constraint set can be considered a
dataset itself, it can suffer from the same imperfections as traditional datasets, such
as: missing values, noise or redundancies.

e New combinations of types of background knowledge. Another potential research
direction is to investigate how to automatically identify the best combination of
background knowledge for a given problem, hence keeping low human effort and
cost.

50/51



Thanks for your attention




Constrained Clustering

Applications

Proportion of proposals by

field of application

Text data analysis
(30 proposals, 31.6%)

Biological data analysis
(12 proposals, 12.6%)

Others
(30 proposals, 31.6%)

Video data analysis
(6 proposals, 6.3%)

Image data analysis
(17 proposals, 17.9%)
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