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Introduccion

* Aprendizaje automatico: un punto de vista actual

* Riesgos
* Computacionales: generalizacion, sesgo (bias)-varianza,
regularizacion
* Sociales: laborales, empresariales, humanos
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Linear regression



Linear regression

Living area (feet?) | #bedrooms | Price (1000$s)
2104 3 400
1600 3 330
2400 3 369
1416 2 232
3000 4 540

hg(ill‘) — (9() -+ (915131 -+ (925132

Oi's are the parameters (also called weights) parameterizing the space of linear
functions mappings

h: X —UY



Linear regression

When there is no risk of confusion, we will drop the 0 subscript in
h@([]f) — (90 -+ (91513'1 -+ (92.1?2

write it more simply as h(x). To simplify our notation, we also introduce the
convention of letting xo= 1 (this is the intercept term), so that

d
h(x) = Z 0,z; = 0" x,
i=0



Linear regression

Given a training set, how do we pick, or learn, the parameters 07

One reasonable method seems to be to make h(x) close to y, at least for the training
examples we have.

To formalize this, we will define a function that measures, for each value of the 8’s, how

close the h(x)’'s are to the corresponding y’s . We define the cost function:
n

7(6) = 5 3" (ho(a®) —y©)

1=1

least-squares cost function that gives rise to the ordinary least squares regression model



Linear Regression

Linear regression example - Optimization of 6
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GGradient descent



GGradient descent

Given a function J(81,82) we look for the values of 81 and 82
that make the value of J to a minimum

Algorithm;
. Assign arbitrary values to 81 and 62

Modify the values of 81 and 82 to reduce the value of J
Until we believe that we have reached a minimum
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GGradient descent

To solve .
f < argmin J(0)
0
GD is the algorithm &
0 +— 90
repeat
0J

until no more improvement can be reached

return 6

12
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Linear regression




Linear regression

For a single training example, this gives the LMS (“least mean squares”) update rule

the magnitude of the update is proportional to the error term (y" — he(x")):

If we are encountering a training example on which our prediction nearly matches
the actual value of yU, then we find that there is little need to change the
parameters;

a larger change to the parameters will be made if our prediction has a large error



Probabilistic interpretation
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Probabilistic interpretation

20) = log L(6)
noy () _gfzg,;())z)
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Probabilistic interpretation

Least-squares regression corresponds to finding the maximum likelihood
estimate of 6.

0 did not depend on what was o, even if owere unknown.

5 (" 0720
1=1



(Generalization



(Generalization

* The generalization of machine learning models: their performances on
unseen test example

* Supervised learning problems, given a training dataset, we typically learn
a model hsby minimizing a loss/cost function J(8), which encourages h.to
fit the data. This loss function for training purposes is oftentimes referred

to as the training loss/error/cost.



(Generalization

* Minimizing the training loss Is not our ultimate goal—it is merely our
approach towards the goal of learning a predictive model. The most
important evaluation metric of a model is the loss on unseen test

examples, which is oftentimes referred to as the test error.

minimizing the training error may not always lead to a small test error

the model overfits the data if the model predicts accurately on the training dataset but doesn’t
generalize well to other test examples, that is, if the training error is small but the test error is large.



(Generalization

Test distribution D.
The expected loss/error over the randomness of the test example is called the test
loss/error

L(0) = E@y)~pl(y — ho(z))?

We’ll see how the test error is influenced by the learning procedure, especially the choice of
model parameterizations.

We will decompose the test error into “bias” and “variance” and their tradeofts.

We will discuss when overfitting and underfitting will occur and be avoided.



Bias and variance



Bias and variance

* The training inputs x’s are randomly chosen and the outputs y' are generated by
vi=h*(x") + &Y where the function h*(:) is a quadratic function €lis the observation
noise assumed to be generated from ~N(0,0?).

* A test example (x,y) also has the same input-output relationship y = h*(x) + ¢ where ¢
~ N(0,09). It’s impossible to predict the noise &, and therefore essentially our goal is to

recover the function h*(-)

training dataset test dataset
1.5 1.5

X training data test data

—— ground truth h ™ 8 —— ground truth h™

1.0 1

>
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0.0 - 0.0 -

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X X



Bias and variance

The best fit inear model has large training and test errors

1.5 1.5

X training data test data
best fit inear model X —— Dbpest fit [inear model
1.0 1
>
0.5 1
0.0 1
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6



Bias and variance

The issue cannot be mitigated with more training examples—even with a very large amount of, or
even infinite training examples, the best fitted linear model is still inaccurate and fails to capture the
structure of the data. Even if the noise is not present in the training data, the issue still occurs

: fitting linear models on a large dataset . gitting linear models on a noiseless dataset
X training data x X / ' x  training data
—— ground truth h” Ly —— ground truth h”™

1.0{.—— bestfitlinear model X/ X~ 1 01 — Dest fit linear model

1.0 0.0 0.2 0.4 0.6 0.8 1.0



Bias and variance

The linear model family’s inability to capture the structure in the data—Ilinear models
cannot represent the true quadratic function h*—, but not the lack of the data.

Informally, we define the bias of a model to be the test error even if we were to fit it to
a very (say, infinitely) large training dataset.

The linear model suffers from large bias, and underfits the data.



Bias and variance

Next, we fit a Sth-degree polynomial to the data.

1.5 — 1.5
X training data test data

best fit 5-th degree model —— ground truth h*

1.01 — best fit 5-th degree model

1.0 1.0

The model learnt from the training set does not generalize well to other test
examples



Bias and variance

fitting 5-th degree model on large dataset
1.5

training data
—— best fit 5-th degree model
1.091 —— ground truth h”

O.S—x

0.0 1

0.0 0.2 0.4 0.6 0.8 1.0
X

The bias of the 5-th degree polynomials is small—if we were to fit to an
extremely large dataset, the resulting model would be close to a quadratic

function and be accurate (because the family of 5-th degree polynomials
contains all the quadratic functions)



Bias and variance

The failure of fitting 5-th degree polynomials can be captured by another component of the

test error, called variance of a model fitting procedure

fitting 5-th degree model on different datasets

1.5

x  training data
—— best fit 5-th degree model
1.0

> >

0.5 1

0.0 -

0.0 0.2 0.4 0.6 0.8 1.0
X

there is a large risk that we’re fitting patterns in the data that happened to be present in our
small, finite training set, but that do not reflect the wider pattern of the relationship between
X and y. These “spurious” patterns in the training set are (mostly) due to the observation

1.5

1.0

0.5 1

0.0

0.0

x  training data
—— best fit 5-th degree model

|
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X
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1.5

1.0

0.5 1

0.0 -

0.0

x  training data

—— best fit 5-th degree model (\

0.2 0.4 0.6 0.8 1.0
X

noise ¢(i), and fitting these spurious patters results in a model with large test error.



Bias and variance

The variance can be intuitively characterized by the amount of variations
across models learnt on multiple different training datasets (drawn from the
same underlying distribution).



Bias and variance tradeoff

If our model is too “simple” (has very few parameters), then it may have
large bias (but small variance), and it typically may suffer from underfittng.

If it Is too “complex” and has very many parameters, then it may suffer from
large variance (but have smaller bias), and thus overfitting.



A mathematical decomposition
of error (for regression)




MSE(x)
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have can be thought of as the best possible model learned even with infinite data

- The bias captures the part of the error that are introduced due to the lack of expressivity of

the model. It 1s not due to the lack of data



Regularization



Regularization

Overftting is typically a result of using too complex models, and we need to
choose a proper model complexity to achieve the optimal bias-variance
tradeoftf

When the model complexity is measured by the number of parameters, we
can vary the size of the model (e.g., the number of features)

However, the correct, informative complexity measure of the models can be a
function of the parameters (e.g., &2 norm of the parameters), which may not

necessarily depend on the number of parameters. Then we use regularization

Regularization is an important technigue in machine learning that controls the
model complexity and prevents overfitting



Regularization

Regularization typically involves adding an additional term, called a regularizer and
denoted by R(D) here, to the training loss/cost function:

Ji(0) = J(0) + AR(0)
Jris often called the regularized loss, and A = 0 is called the regularization parameter.

The regularizer R(0) is typically chosen to be some measure of the complexity of the model
0. Thus, when using the regularized loss, we aim to find a model that both fit the data (a
small loss J(8)) and have a small model complexity (a small R(©)).

When A is a sufficiently small positive number, minimizing the regularized loss is effectively
minimizing the original loss with the regularizer as the tie-breaker. When the regularizer is
extremely large, then the original loss is not effective (and likely the model will have a large
bias.)



Regularization

* The most commonly used regularizatilon IS perhaps ¢ regularization,
where R(6) = 3110])3

* |t encourages the optimizer to find a model with small 2 norm. In deep

learning, it’s oftentimes referred to as weight decay, because gradient
descent with learning rate n on the regularized loss Ri(0) is equivalent to
shrinking/decaying 6 by a scalar factor of 1 — nA and then applying the
standard gradient

0 <60 —nVJry(0) =60 —n\0 —nVJ(O)

= (1—=An)0 —nVJ(0)
N——
decaying weights



Regularization (sparsity)

* Besides encouraging simpler models, regularization can also impose inductive biases or
structures on the model parameters. For example, suppose we had a prior belief that the
number of non-zeros in the ground-truth model parameters is small,,—which is oftentimes called
sparsity of the model—, we can impose a regularization on the number of non-zeros in 6

* The sparsity of the parameters is not a continuous function of the parameters, and thus we
cannot optimize it with (stochastic) gradient descent. A common relaxation is to use as a
continuous surrogate the norm-1 (also called LASSO)

R(0) = 0]},

* Norms 1 and 2 are the most commonly used regularizers for linear models. In deep learning
norm 2



Riesgos sociales del AA (LLM)



GPTs are GPTs: An Early Look at the Labor Market Impact
Potential of Large LLanguage Models

Tyna Eloundou!, Sam Manningl’z, Pamela Mishkin*!, and Daniel Rock’

'OpenAl
*‘OpenResearch
SUniversity of Pennsylvania

March 20, 2023



* roles heavily reliant on science and critical thinking skills show a negative
correlation with exposure, while programming and writing skills are
positively associated with LLM exposure.

* information processing industries (4-digit NAICS) exhibit high exposure,
while manufacturing, agriculture, and mining demonstrate lower exposure.



El trabajo requerira al menos un 50% menos de tiempo

Job  Preparation Education Example Occupations Median | Tot H M
Zone Required Required Income | Emp a Q
(000)
] None or little High school diploma Food preparation workers, $30.230 13.100 3.71 3.84
(0-3 months) or GED (optional) dishwashers, floor sanders
2 Some (3-12 High school diploma Orderlies, customer $38.215 | 73.962 7.03 11.88
months) service representatives,
tellers
3 Medium (1-2 Vocational school. Electricians, barbers, 54,815 37.881 11.28 13.72
years) on-the-job training, medical assistants
or assoclate’s degree
4 Considerable Bachelor’s degree Database administrators, $77.345 56.833 22.68 17.82
(2-4 years) graphic designers, cost
estimators
5 Extensive (4+ Master’s degree or Pharmacists, lawyers, $81.980 | 21.221 2281 13.36
years) higher astronomers

Table 6: Exposure to GPTs by Job Zone




Repercusiones |A

* Disminuye la Intermediacion
* Organizaciones (debido a la |A) transforman en plataformas gestionas

por algoritmos que mueven una enorme cantidad de datos. Por ejemplo
los bancos, operadoras moviles, eléctricas, seguros ...

* Consumo energetico



¢,Por donde puede ir la solucion?

* Humanidad: creatividad extra

* Laboral. Avanzar en
. Intermediacion
. Automatizacion (plataformas)
. Optimizacion de
. procesos mas sostenibles
. la vida (cuidados)



., Y la universidad?

* Como ensenamos?
* Para qué profesiones preparamos a nuestros estudiantes?

* Qué destrezas deberan tener?



., Y ahora qué?

* Humildad género humano

* Humildad metodologica



.,Y ahora que?

g N Andrew Ng &

¥ @AndrewYNg
When | think of existential risks to large parts of humanity:
*The next pandemic

* Climate change—>massive depopulation

* Another asteroid
Al will be a key part of our solution. So if you want humanity to survive &

thrive the next 1000 years, lets make Al go faster, not slower.

6:33 PM - May 30, 2023 - 11M Views

824 Retweets 175 Quotes 4,410 Likes 205 Bookmarks



.,Y ahora que?

- Yann LeCun &

)y @ylecun
Super-human Al is nowhere near the top of the list of existential risks.
In large part because it doesn't exist yet.

Until we have a basic design for even dog-level Al (let alone human
level), discussing how to make it safe is premature.






