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Introducción

• Aprendizaje automático: un punto de vista actual

• Riesgos 
• Computacionales: generalización, sesgo (bias)-varianza, 

regularización
• Sociales: laborales, empresariales, humanos



Contents 
• Linear regression

• Gradient descent
• Probabilistic interpertation

• Generalization
• Bias and Variance
• Regularization
• Riesgos sociales del AA (LLM)

• Reference (main)
• Main notes, CS229, Stanford University (Andrew Ng)



Linear regression



Linear regression 

θi’s are the parameters (also called weights) parameterizing the space of linear 
functions mappings

h : 𝓧 ⟼ 𝓨 



Linear regression 

When there is no risk of confusion, we will drop the θ subscript in

write it more simply as h(x). To simplify our notation, we also introduce the 
convention of letting x0 = 1 (this is the intercept term), so that 

 



Linear regression 
Given a training set, how do we pick, or learn, the parameters θ? 
One reasonable method seems to be to make h(x) close to y, at least for the training 
examples we have. 

To formalize this, we will define a function that measures, for each value of the θ’s, how 
close the h(x)’s are to the corresponding y’s . We define the cost function:

least-squares cost function that gives rise to the ordinary least squares regression model 



Linear Regression
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y ≈ θ1x1

Optimization of θ

J(θ)



Gradient descent 



Gradient descent

Given a function J(⍬1,⍬2) we look for the values of ⍬1 and ⍬2 
that make the value of J to a minimum

Algorithm:
Assign arbitrary values to ⍬1 and ⍬2
Modify the values of ⍬1 and ⍬2 to reduce the value of J 
Until we believe that we have reached a minimum



⍬1
⍬2

J(⍬1,⍬2)



Gradient descent 
To solve

GD is the algorithm
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Linear regression



Linear regression

For a single training example, this gives the LMS (“least mean squares”) update rule 

the magnitude of the update is proportional to the error term (y(i) − hθ(x(i))):
if we are encountering a training example on which our prediction nearly matches 
the actual value of y(i), then we find that there is little need to change the 
parameters; 
a larger change to the parameters will be made if our prediction has a large error



Probabilistic interpretation



Probabilistic interpretation



Probabilistic interpretation

Least-squares regression corresponds to finding the maximum likelihood 
estimate of θ.

θ did not depend on what was σ, even if σ  were unknown.



Generalization



Generalization

• The generalization of machine learning models: their performances on 
unseen test example 

• Supervised learning problems, given a training dataset, we typically learn 
a model hθ  by minimizing a loss/cost function J(θ), which encourages hθ  to 
fit the data. This loss function for training purposes is oftentimes referred 
to as the training loss/error/cost. 



Generalization

• Minimizing the training loss is not our ultimate goal—it is merely our 
approach towards the goal of learning a predictive model. The most 
important evaluation metric of a model is the loss on unseen test 
examples, which is oftentimes referred to as the test error.  

minimizing the training error may not always lead to a small test error 

the model overfits the data if the model predicts accurately on the training dataset but doesn’t 
generalize well to other test examples, that is, if the training error is small but the test error is large. 



Generalization
Test distribution D. 
The expected loss/error over the randomness of the test example is called the test 
loss/error 

We’ll see how the test error is influenced by the learning procedure, especially the choice of 
model parameterizations. 

We will decompose the test error into “bias” and “variance” and their tradeoffs. 

We will discuss when overfitting and underfitting will occur and be avoided. 



Bias and variance



Bias and variance
• The training inputs x(i)’s are randomly chosen and the outputs y(i) are generated by 

y(i)= h*(x(i)) + ξ(i) where the function h*(·) is a quadratic function ξ(i)
 is the observation 

noise assumed to be generated from ∼N(0,σ2). 

• A test example (x,y) also has the same input-output relationship y = h*(x) + ξ where ξ 
∼ N(0,σ2). It’s impossible to predict the noise ξ, and therefore essentially our goal is to 
recover the function h*(·) 



Bias and variance

The best fit linear model has large training and test errors 



Bias and variance
The issue cannot be mitigated with more training examples—even with a very large amount of, or 
even infinite training examples, the best fitted linear model is still inaccurate and fails to capture the 
structure of the data. Even if the noise is not present in the training data, the issue still occurs 



Bias and variance

The linear model family’s inability to capture the structure in the data—linear models 
cannot represent the true quadratic function h*—, but not the lack of the data. 

Informally, we define the bias of a model to be the test error even if we were to fit it to 
a very (say, infinitely) large training dataset. 

The linear model suffers from large bias, and underfits the data. 



Bias and variance
Next, we fit a 5th-degree polynomial to the data. 

The model learnt from the training set does not generalize well to other test 
examples



Bias and variance

The bias of the 5-th degree polynomials is small—if we were to fit to an 
extremely large dataset, the resulting model would be close to a quadratic 
function and be accurate (because the family of 5-th degree polynomials 
contains all the quadratic functions)



Bias and variance
The failure of fitting 5-th degree polynomials can be captured by another component of the 
test error, called variance of a model fitting procedure 

there is a large risk that we’re fitting patterns in the data that happened to be present in our 
small, finite training set, but that do not reflect the wider pattern of the relationship between 
x and y. These “spurious” patterns in the training set are (mostly) due to the observation 
noise ξ(i), and fitting these spurious patters results in a model with large test error.



Bias and variance

The variance can be intuitively characterized by the amount of variations 
across models learnt on multiple different training datasets (drawn from the 
same underlying distribution). 



Bias and variance tradeoff

If our model is too “simple” (has very few parameters), then it may have 
large bias (but small variance), and it typically may suffer from underfittng. 

If it is too “complex” and has very many parameters, then it may suffer from 
large variance (but have smaller bias), and thus overfitting. 



A mathematical decomposition 
of error (for regression)



havg can be thought of as the best possible model learned even with infinite data

The bias captures the part of the error that are introduced due to the lack of expressivity of 
the model. It is not due to the lack of data



Regularization



Regularization
• Overftting is typically a result of using too complex models, and we need to 

choose a proper model complexity to achieve the optimal bias-variance 
tradeoff

• When the model complexity is measured by the number of parameters, we 
can vary the size of the model (e.g., the number of features) 

• However, the correct, informative complexity measure of the models can be a 
function of the parameters (e.g., l2 norm of the parameters), which may not 
necessarily depend on the number of parameters. Then we use regularization

• Regularization is an important technique in machine learning that controls the 
model complexity and prevents overfitting



Regularization
• Regularization typically involves adding an additional term, called a regularizer and 

denoted by R(θ) here, to the training loss/cost function: 

Jλ(θ) = J(θ) + λR(θ) 

• Jλ is often called the regularized loss, and λ ≥ 0 is called the regularization parameter. 

• The regularizer R(θ) is typically chosen to be some measure of the complexity of the model 
θ. Thus, when using the regularized loss, we aim to find a model that both fit the data (a 
small loss J(θ)) and have a small model complexity (a small R(θ)). 

• When λ is a sufficiently small positive number, minimizing the regularized loss is effectively 
minimizing the original loss with the regularizer as the tie-breaker. When the regularizer is 
extremely large, then the original loss is not effective (and likely the model will have a large 
bias.) 



Regularization

• The most commonly used regularization is perhaps l2 regularization, 
where 

• It encourages the optimizer to find a model with small l2 norm. In deep 
learning, it’s oftentimes referred to as weight decay, because gradient 
descent with learning rate η on the regularized loss Rλ(θ) is equivalent to 
shrinking/decaying θ by a scalar factor of 1 − ηλ and then applying the 
standard gradient 



Regularization (sparsity) 
• Besides encouraging simpler models, regularization can also impose inductive biases or 

structures on the model parameters. For example, suppose we had a prior belief that the 
number of non-zeros in the ground-truth model parameters is small,2—which is oftentimes called 
sparsity of the model—, we can impose a regularization on the number of non-zeros in θ 

• The sparsity of the parameters is not a continuous function of the parameters, and thus we 
cannot optimize it with (stochastic) gradient descent. A common relaxation is to use as a 
continuous surrogate the norm-1 (also called LASSO)

• Norms 1 and 2 are the most commonly used regularizers for linear models. In deep learning 
norm 2



Riesgos sociales del AA (LLM) 





• roles heavily reliant on science and critical thinking skills show a negative 
correlation with exposure, while programming and writing skills are 
positively associated with LLM exposure. 

• information processing industries (4-digit NAICS) exhibit high exposure, 
while manufacturing, agriculture, and mining demonstrate lower exposure.



El trabajo requerirá al menos un 50% menos de tiempo



Repercusiones IA

• Disminuye la Intermediación 

• Organizaciones (debido a la IA) transforman en plataformas gestionas 
por algoritmos que mueven una enorme cantidad de datos. Por ejemplo 
los bancos, operadoras móviles, eléctricas, seguros …

• Consumo energético



¿Por dónde puede ir la solución?

• Humanidad: creatividad extra

• Laboral. Avanzar en 
Intermediación
Automatización (plataformas)
Optimización de

procesos más sostenibles
la vida (cuidados)



¿Y la universidad?

• Cómo enseñamos?

• Para qué profesiones preparamos a nuestros estudiantes?

• Qué destrezas deberán tener?



¿Y ahora qué?

• Humildad género humano

• Humildad metodológica 



¿Y ahora qué?



¿Y ahora qué?




