Métodos de Inteligencia Artificial en Biología Computacional Artificial Intelligence Methods in Computational Biology

> José Santos Universidad de A Coruña jose.santos@udc.es

Departamento de Computación - Universidad de A Coruña

Computational Biology. Definition

Bioinformatics: Research, development, or application of computational tools and approaches for expanding the use of biological, medical, behavioral or health data, including those to acquire, store, organize, archive, analyze, or visualize such data.

Computational Biology: The development and application of data-analytical and theoretical methods, mathematical modeling and computational simulation techniques to the study of biological, behavioral, and social systems.

Bioinformatics applies principles of information sciences and technologies to make the vast, diverse, and complex life sciences data more understandable and useful. Computational biology uses mathematical and computational approaches to address theoretical and experimental questions in biology.

NIH Working Definitions of Bioinformatics and Computational biology, 2000:

https://www.bisti.nih.gov/docs/CompuBioDef.pdf

The NIH Biomedical Information Science and Technology Initiative Consortium agreed on the previous definitions of bioinformatics and computational biology recognizing that no definition could completely eliminate overlap with other activities or preclude variations in interpretation by different individuals and organizations.

Computational Biology. Definition

Other definition:

Computational biology: the study of biology using computational techniques. The goal is to learn new biology, knowledge about living systems. **It is about science.**

Bioinformatics: the creation of tools (algorithms, databases) that solve problems. The goal is to build useful tools that work on biological data. It is about engineering.

(Russ Altman, Stanford University).

Computational Biology. Areas of research

Protein structure prediction and protein folding modeling with cellular automata

Departamento de Computación – Universidad de A Coruña

Departamento de Computación – Universidad de A Coruña

Proteins - PDB (Protein Data Bank)

Yearly Growth of Total Structures number of structures can be viewed by hovering mouse over the bar

Total 🛚 Yearly

Proteins. HP Model

NONPOLAR, HYDROPHOBIC			POLAR, UNCHARGED		
Alanine Ala A MW = 89	- оос _{Н₃№} >сн	R GR	OUPS H-	сн ^{~ соо-} № Н ₃	Glycine Gly G MW = 75
Valine Val V MW = 117	- 00C H ₃ N CH	н-сң ^{сн} з снз	но-сн ₂ -	сн< ^{соо-}	Serine Ser S MW = 105
Leucine Leu L MW = 131	-00C H ₃ N -00C	н – сн ₂ – сң ^{СН} 3 СН ₃	ОН~сн- сн ₃ сн-	сн ^{<соо-}	Threonine Thr T MW = 119
Isoleucine Ile I MW = 131	-00C H ₃ N -00C	н-сң ^{сн} 3 сн ₂ -сн ₃	HS - CH ₂	- сн ^{_соо-}	Cysteine Cys C MW = 121
Phenylalanine Phe F MW = 131	-00C H ₃ N +3	н – сн ₂	но - 🚫 - сн ₂	- сңС ^{соо-}	Tyrosine Tyr Y MW = 181
Tryptophan Trp W MW = 204	-00C H ³ ^N	н-сн ₂ - с	0 C - CH2	-сн ^{~соо°}	Asparagin Asn N MW = 132
Methionine Met M MW = 149	- оос _{Н₃№} >сн	- CH ₂ - CH ₂ - S - CH ₃	№Н ₂ 0 — С - СН ₂ - СН ₂	-сн ^{соо-} үн _э	Glutamine Gln Q MW = 146
Proline Pro P MW = 115	^{- 000} _с н		⁺ NH ₃ - CH ₂ - (СН	POLAR BASIC 2)3 - CH COO N H3	Lysine Lys K MW = 146
Aspartic acid Asp D MW = 133		с I - сн ₂ - с<0	NH ₂ NH ₂ C-NH-(CH	₂)3-сн ^{соо.} [№] н ³	Arginine Arg R MW = 174
Glutamine acid Glu E MW = 147	-00C H ₃ N >CH	н - сн ₂ - сн ₂ - с<0	/=Ç-CH₂-0 HN≫NH	сн ^{соо-} [№] н ₃	Histidine His H MW = 155

HP model

Grid 3D

- Amino acids are classified in:
 - H (hydrophobic): low propensity to be in contact with water, tendency to be buried inside the protein core
 - P (polar): tendency to be in the protein surface in contact with water
- Each protein is represented as a chain: HPHPPHHPPHPPHPHPHPHPHPH

Departamento de Computación – Universidad de A Coruña

HP Model. Protein Structure Prediction with Evolutionary Algorithms

Protein Conformation Representation: relative moves

Relative moves: F, L, R (Grid 2D)

Departamento de Computación - Universidad de A Coruña

Differential Evolution

Algorithm 1 Differential Evolution Algorithm.

 d_1

Differential Evolution. Encoding

We used relative coordinates. Three movements in 2D: (F)orward, (R)ight and (L)eft

0.24 -0.33 2.44 -1.25 0.18 ... F F R L F

movement **L** if Xij $[\alpha, \beta)$ **F** if Xij $[\beta, \delta)$ **R** if Xij $[\delta, \gamma]$

 $\alpha < \beta < \delta < \gamma$ arbitrary constants in R (α =-3, β =-1, δ =1, γ =3)

Repair process

Original illegal conformation

Cartesian coordinates

procedure: tries to obtain legal conformations searching for a similar one in the Cartesian space

Final conformation

Some results

Comparison of results with the benchmark sequences

Seq.	E_{min}	U&M GA [23]	hybrid DE	L&B DE [13]	ACO [18]
S1	-9	-9 (30492)	-9 ,-9 (3584, 6362)	-9 ,-9	-9
S2	-9	-9 (30491)	-9 ,-9 (5806, 9292)	-9 ,-9	-9
S3	-8	-8 (20400)	-8 ,-8 (7061, 18828)	-8 ,-8	-8
S4	-14	-14 (301339)	-14 ,-14 (45793, 92579)	-14 ,-13.96	-14
S5	-23	-22(126547)	-23 ,-23 (245943, 532787)	-23 ,-23	-23
S6	-21	-21 (592887)	-21 ,-21(365222, 691989)	-21 ,-21	-21
S7	-36	-34(208781)	-35,-33.57	-35,-34.79	-36
S8	-42	-37 (187393)	-42 ,-42 (176313, 340917)	-42 ,-41.87	-42

Optimal configurations for three of the sequences: S5, S6 and S8

Protein folding

Cellular automata

von Neumann neighborhood in a cellular automaton in 2D

Conway's "Game of Life"

Protein folding with "Neural Cellular Automata"

Protein folding. Example in 2D with the HP model

Departamento de Computación - Universidad de A Coruña

Protein folding. Example in 3D with the HP model

amino acid 5, step 4

amino acid 13, step 4

amino acid 4, step 5

Departamento de Computación – Universidad de A Coruña

Evolving "Neural Cellular Automata" with Differential Evolution

Protein folding process modeling with the HP model

2D sequence – Optimum: 14 HH contacts

3D sequence – Optimum: 12 HH contacts

Protein folding process modeling with the off-lattice model of the Rosetta system

Snapshots of the folding at the end of different temporal steps with protein sequence 1j4m. The last snapshot shows the native structure (green) and the final folded structure at the last step (blue).

Protein folding process modeling with the off-lattice model of the Rosetta system

Final folded conformation for protein 1j4m (14 amino acids) (blue) and the corresponding native structure (green) when the energy term associated with secondary structure elements is taken into account and when the folding process begins with a partially folded conformation.

Final folded conformation for protein 1d5q (27 amino acids) (blue) and the corresponding native structure (green) when the folding process begins with a partially folded conformation.

Tumor growth modeling with cellular automata

Departamento de Computación - Universidad de A Coruña

EVIA 2016

Cancer hallmarks

1. SG. Growth even in the

5. GI. Genetic Instability.

Hanahan, D. and Weinberg, R.A. (2000) The hallmarks of cancer, *Cell*, 100, 57-70.

AC Cell growth simulation

Mitosis event in the future: between 5 and 10 instant in the future

Each gene (hallmark) is mutated with a *1/m* chance of mutation

Normal cell mitosis

1 iteration = 2.6 hours 5000 iterations = 75 weeks

AC Cell growth simulation. Self-growth hallmark (SG)

Normal cell mitosis

If *Self-growth* hallmark acquired, there is no need of growth factors

²D section of the grid

Departamento de Computación - Universidad de A Coruña

AC Cell growth simulation. Ignore growth inhibit hallmark (IGI)

No empty space in the neighborhood

If *Ignore growth inhibit* hallmark acquired, a neighbor is killed (with probability *1/g*) to make room for mitosis

AC Cell growth simulation. Evade apoptosis hallmark (EA)

A cell with *n* hallmarks mutated has an extra *n/e* likelihood of dying each cell cycle.

AC Cell growth simulation. Effective immortality hallmark (EI)

If telomere reaches 0, the cell dies.

Can perform mitosis Even if telomere length =0, if *Effective immortality* hallmark (EI) is ON, the cell can continue dividing.

AC Cell growth simulation. Genetic instability (GI)

Event model

Simulating cancer cell cultures: Multicellular spheroids

Microscopy image of a multicellular tumor spheroid, exhibiting an extensive branching system that rapidly expands into the surrounding extracellular matrix gel. These branches consist of multiple invasive cells. Guiot *et al. Theoretical Biology and Medical Modelling* 2007 **4**:4 doi:10.1186/1742-4682-4-4

Growth stages of 3D-cultured CT26 colon cancer spheroid. Five hundred suspension cancer cells were dispensed into each well of a 48-well culture tray. Trays were then inverted and incubated during 12 days. Spheroids were collected on days 3, 5, 7 and 12 and processed for cell counting, spheroid diameter determination and immunohistochemical detection of Ki67-expressing cells. Scale bar: 100 μ m. Valcárcel M, et al.- J Transl Med (2008)

Some simulations and results

Departamento de Computación - Universidad de A Coruña

EVIA 2016

Dependence on hallmark parameters

Evolution through time iterations of the number of healthy cells (continuous lines) and cancer cells (dashed lines) for different base mutation rates (1/m)

Simulation run with default parameters and m=100

0

Grid size=125000, mutation rate=0.01

Simulation run with parameters that facilitates cancer appearance

Simulation run with parameters that facilitates cancer appearance

٠

Snapshots of the cellular system at different time steps

```
Grid size=10<sup>6,</sup> mutation rate=10<sup>-5</sup>
```

0

Relevance of hallmarks

Effect of elimination of individual cancer hallmarks. Default parameters.

Behavior transitions

Effect of killing cancer cells during tumor growth for different killing probabilities and using four parameter sets.

Departamento de Computación – Universidad de A Coruña

EVIA 2016

slis 50000

40000

30000

20000

10000

0

-m=100000,

Fig. 4

0,2 0,4 0,6

parameters of

d)

0.85

m=10000

e=20, default

parameters

g=5

c)

0,2 0,4 0,6 0,8

30000

20000

10000

0

0

of can

Cancer Stem Cells

CSCs can divide symmetrically or asymmetrically to produce Differentiated Cancer Cells (DCCs) with limited proliferative capability.

Introduction of Cancer Stem Cells (CSCs) in the multicellular system evolution. Standard parameters and g=5.

Snapshots of 2D central sections Gray: Healthy cells, Blue: DCCs, Red-enlarged size: CSCs.

Departamento de Computación - Universidad de A Coruña

of cells

number

EVIA 2016

t=8500

Standard parameters and m=1000.

Snapshots of 2D central sections Gray: Healthy cells, Blue: DCCs, Red-enlarged size: CSCs.

B::-

t=9000

Departamento de Computación - Universidad de A Coruña

FOLFOX4 treatment for colon cancer

Departamento de Computación – Universidad de A Coruña

EVIA 2016

Treatment applied every 600 time iterations killing the 100% of the DCCs in such iterations.

2D snapshots of the central part of the grid at given time iterations (Colors: Gray - healthy cells, Blue - DCCs, Red-enlarged size - CSCs).

5000

Continuous treatments that kill 1%, 2% and 3% of DCCs are applied in every time iteration.

Accumulative treatment intensity across iterations

Differential Evolution

Encoded parameters: treatment intensity, duration and period. 50 generations, grid size of 64000 sites. Hallmark parameters: g = 5, m = 1000, others - standard values Fitness: DCCs after a given number of iterations (100) once the treatment is stopped + Intensity used during the treatment application.

Departamento de Computación - Universidad de A Coruña

Evolved treatment strategies

Evolution of DCCs

Treatment period, intensity and duration optimized. Treatments do not begin before time iteration t=600. The best evolved treatment kills 49% of DCCs during 8 time iterations and a period of 346 iterations (treatment A). A high-intensity treatment that kills the 100% of DCCs every 600 iterations is included for comparison (treatment B).

Conclusions

The hallmark implications for cell population dynamics are difficult to foresee without a simulation model.

Our focus was on the dependences of the first phases of cancer growth on the hallmark parameters:

- In a CSC context, the model predicts and is in agreement with the clinical observations describing increased growth speed and enhanced invasion in the relapsing malignancy.
- Using EC: Treatments should be maintained during very few days, avoiding high intensities and, consequently, with longer periods than the ones used in standard treatments. The aim is to make more difficult CSC proliferation and consequently their differentiation to minimize their future effect on a possible tumor regrowth

The modeling can lead to a better understanding and characterization of the underlying biological processes involved. • Adami, C. (1998), *Introduction to artificial life*, Telos-Springer Verlag.

References

- Ilachinski, A. (2001), Cellular automata. A discrete universe. World Scientific.
- Langton, C.G. (1989), "Artificial life", Artificial Life, SFI Studies in the Sciences of Complexity, Vol. VI, C.G.
 Langton (Eds.), 1-47, Addison-Wesley.
- Monteagudo, A. and Santos, J. (2014), "Studying the capability of different cancer hallmarks to initiate tumor growth using a cellular automaton simulation. Application in a cancer stem cell context", *Biosystems* 115: 46-58.
- Monteagudo, A. and Santos, J. (2015), "Evolutionary optimization of cancer treatments in a cancer stem cell context", *Proceedings Genetic and Evolutionary Computation Conference GECCO 2015*, 233-240.
- Monteagudo, A. and Santos, J. (2015), "Treatment analysis in a cancer stem cell context using a tumor growth model based on cellular automata", *Plos One*, doi: 10.1371/journal.pone.0132306.
- Santos, J. (2007), *Vida Artificial. Realizaciones Computacionales*, Servicio de Publicaciones de la Universidad de A Coruña.
- Santos. J. and Diéguez, M. (2011), "Differential evolution for protein structure prediction using the HP model", *Inter. Work-Conf. on the Interplay between Natural and Artificial Comp., LNCS* 6686:323-333.
- Santos, J. and Monteagudo, A. (2014), "Analysis of behaviour transitions in tumour growth using a cellular automaton simulation", *IET Systems Biology*, doi: 10.1049/iet-syb.2014.0015.
- Santos, J., Villot, P., Diéguez, M. (2014), "Emergent protein folding modeled with evolved neural cellular automata using the 3D HP model", *Journal of Computational Biology* 21(11):823-845.

http://www.dc.fi.udc.es/ai/~santos/

Departamento de Computación - Universidad de A Coruña

EVIA 2016