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UBIQUITOUS NETWORKED ROBOTS 
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What is an UNR (EU) 

Definition: 
 
A Network Robot System is a group of artificial autonomous 
systems that are mobile and that makes important use of 
wireless communications among them or with the 
environment and living systems in order to fulfill their tasks. 
 
 
Elements: 
 

Autonomous robot 
Communication network 
Environment sensors 
People 

[Sanfeliu, Hagita and Saffiotti, 2008] 
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UNR in EU 
URUS: Robots in Urban Areas  

Cameras and 
ubiquitous 

sensors 

Robots with 
intelligent head 

and mobility 

People with 
mobile phones 

and RDFI 

Robots for 
transportation of 
people and goods 

Wireless and 
network 

communication 

http://www.urus.upc.edu 
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Sharing Information for Guiding People  

Cameras and 
ubiquitous 

sensors 

Robots with 
intelligent head 

and mobility 

People with 
mobile phones 

and RDFI 

Wireless and 
network 

communication 

The UNR elements, networked cameras,  
communications  and the embedded  
sensors of the robots are used for guiding  
people in the urban sites. 
 
The information is shared by the robots 
and people through the UNR elements in 
order to accomplish the guiding task. 

-  Robots know the localization  and motion  
of the people trough the network cameras   
an own sensors. 
 

-  Robots have to predict people movements 
to anticipate them and have to plan their 
re-grouping.  
 

- Robots explain the itinerary and dialogue 
with people. 
 

- People can visualize by themselves or  
trough the networked cameras the itinerary.  
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Transporting People in an Urban Site 

The UNR elements, networked cameras,  
communications  and the embedded  
sensors of the robots are used for transporting 
people. 

RobotsTibi and Dabo 

The information is shared by the robots 
and people through the UNR elements in 
order to accomplish the transportation task. 

-  Robots know the localization  and motion  
of the people trough the network cameras   
an own sensors. 
 
-   A person communicate with robots to ask to 
be transported and they share the plan 
information  
 

- Robots synchronize themselves to transport 
the person.. 
 

-  Robots do the motions in the urban site to  
transport the person.   
 
 

Autonomous vehicle 



A. Sanfeliu / Urban Robots 

Tibi and Dabo Guiding People 

A S f li / U b R b

Autonomous robot guiding and 
accompany people at UPC 
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UNR in EU 
DustBot: Urban Hygiene 
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“Virtual” type “Unconscious” 
          type 

Network Robots 

Ubiquitous 
Network 

Networked Robots Proposed by Japan 
“Visible” type 

Apri-alpha Robovie 
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The NRS Project in Japan 
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The NRS Project in Japan 
Some Results 

Sequence of videos showing 
mobile robots helping people 
to find specific shops in a 
market mall 
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The NRS Project in Japan 
Some Results 

AA SSSSSSSSSSSSaaaaaaaaaaaaaaaaannnnnnnnnnnffffeeeelliiiuuu // UUUUrrbbaaannnn RRRRRRRoooobbbbboooottttttssAAAAAAAA.  SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaannnnnnnnnfffffffffeeeeeeeeelllllllliiiuuuu //// UUUrrrbbbbaaaaaaannnnnnn RRRRRRRoooooooobbbbbboooooottttttsssss  

Semi autonomous robot 
helping a person to buy and 
bring supermarket goods 

Semi autonomous Geminoid 
talking with a person 
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TASKS THAT CAN BE DONE BY 
URBAN ROBOT SERVICES 



A. Sanfeliu / Urban Robots 

Urban Tasks 

•  Cleaning the streets and garbage collector: This is a 
task that the robots can do more efficiently and at lower cost. 

•  Transportation of people: This is the Taxi task in urban 
areas. The transportation can be individual or collective. 

•  Transportation of goods. This is an essential part in 
commercial life and a main need for shopkeepers and markets. In 
the superblock there will be two phases for merchandise 
distribution. 

•  Transportation of other materials. Robots can have a 
role also in the transportation of different materials or elements 
that could be eventually needed in the repairing of services or 
ground pavement, working as a complement to specialized 
personnel. 

•  Monitoring and Maintenance service. As a variation of 
the later point, robots could be an ideal tool to check continuously 
pipes, and communications and electricity cables located in the 
underground and more specifically in services galleries. 



A. Sanfeliu / Urban Robots 

Urban Tasks 

•  Social assistance: To help people trough tele-operation. 

•  Emergency calls. A number of emergency situations can 
develop in a given area: an accidental flooding due to a broken 
pipe, a gas leaking which involves the risk of explosion, a fire. 
Robots can be prepared to face this kind of situations with specific 
protocols. 

•  Security. Robots equipped with cameras can contribute to 
public space surveillance. Connected with the police station it 
would be possible to accelerate security forces response to any 
situation. This is related to emergency calls but is independent in 
the sense that involves crime. 

•  Helping the disabled and people with mobility 
handicaps to overcome limitations. The right to move 
through the streets extends to everybody. The contemporary city 
must take into account all of its citizens and help them to 
overcome physical limitations. 

•  Others  
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SOME RESEARCH WORK  IN URBAN 
ROBOTICS AT IRI (CSIC-UPC) 
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Research Work at IRI in Urban Robotics 

Mobile Robotics 
•  Building maps 

•  Robot navigation 
 

Mobile Robotics dealing with people 
•  Robot navigation being aware of people 

•  Guiding/accompany people 

•  Looking for a person 

•  Learning faces and objects 

•  Human-Robot task collaboration 
 

Aerial Robots for Emergency Situations 
•  Manipulation tasks with flying robots 
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Experiment Locations in BCN 

The Institute of Robotics 
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Experiment Location 
BRL  UPC 

Zone Campus Nord, UPC 

Barcelona ROBOT Lab 
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General Multimodal Scheme 

Robotic 
Multimodal 
Interactive 

System 
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3D MAP BUILDING 
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3D Map Building 

Objective: To build a 3D map of an urban area for navigation 
purposes. 

 

[Ortega et al, 2009], [Ortega et al, 2009], [Valencia et al, 2009] 
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Map Building: 3D Sensor 

UPC 3D ranger scan 
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3D Mapping for Service Robots 

Data acquisition 

ICP alignment 

6DOF SLAM 

 
Traversability map 

 

Approach 
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3D Mapping results 

  Results are compared to manually built CAD model. 
  The CAD model was made using  geo-referenced information. 

The final 3D model 
Detail view of the 3D model 
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3D Mapping results 

Looking solutions to close the loop Generated model superimposed on the CAD 
model 
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2D Path on the 3D Map 

 

 

The path obtained on the 3D Map 
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Traversability Map 

  2D layer at the robot’s frontal laser 
height 

Laser height 

Grid map 
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Traversability Map 
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ROBOT NAVIGATION 
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Robot Navigation 

Front Vertical Hokuyo Laser Scanner 

Back Horizontal Leuze Laser Scanner 

Front Horizontal Leuze Laser Scanner 

Wheel encoders (2D odometry) 

Bumblebee Stereo Camera 

Touch Screen 

HRI sensors 
Navigation Sensors 

[Sanfeliu et. al., 2010] [Trulls et al., 2011] 

[Corominas, Mirats, Sanfeliu, 2008]  
[Corominas et al, 2010] 

Objective: Autonomous navigation in urban areas avoiding 
obstacles. 
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acquisition Particle Filter  
map-based  
Localization 

WayPoint 
Path  

Execution 

RRT Local 
Planning 

Path  
Planning 

Traversability 
Inference 

DWA 
Motion 
Control 

horizontalBack  
LeuzeRS4 

horizontalFront  
LeuzeRS4 

Vertical 
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acquisition 
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acquisition 

driver Wheel  
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interface Reactive Loop, 10Hz  (local coord. frame) 

Deliberative Loop, 3Hz (map coord. frame) 

Autonomous Navigation Framework 
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Obstacle Avoidance Diagram 

Front horizontal Laser 

Goal position in  
local frame 

Odometry data 

Platform  
commands 

Front vertical Laser 

Inputs:  Outputs:  

FREE Goal position in  
local frame 
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Traversability Inference 

 
  Two situations where Traversability 

 Inference is required (ramp zones) 
 
  Extraction of vertical regression 

 line from vertical laser data to 
 detect ramps 
 

Vert. laser Hori. laser 
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Local Planner 

Initial situation. First path tentative Final situation. Path found 

robot 

Goal Goal 
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Navigation Results 

Videos_pruebas\Tibi_Navegando_BRL_2010_WMV V9_002.wmv 
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ROBOT NAVIGATION BEING AWARE 
OF PEOPLE 
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Robot Navigation Being Aware of People 

Objective: Autonomous navigation in urban areas in crowded 
sites. The robots have to deal with the motion of people and 
being aware of them. 

Approach: One way to solve this topic is using Extended Social 
Force Model. Idea: 

 Fi = fi
goal +Fi

int    where fi =mi

dvi (t)

dt
where

Fi
int = fi, j

int +
j∈P

∑ fi,o
int +

o∈O

∑ fi,r
int    

where P set of people and O set of obstacles

fi
goal = ki (vi

0 − vi )

fi,q
int = Aq e(dq−di,q )/Bq di,q

di,q[Ferrer, Garrell, Sanfeliu, 2013] 
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Results 

Some results on social aware navigation 

Navigation with Social Force Model 
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Videos 

Navigation with Social Force Model 
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BEHAVIOR ESTIMATION OF HUMAN 
MOTION  
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Behavior Estimation of Human Motion  

Objective: Learn human motion behaviors. 

 We have to learn the human motion parameters of each 
person: aware, balanced and unaware. 

Approach: 
 We want to estimate the human motion behaviors B={B1, B2, 

} than means to learn a set of parameters θl={kl,ql,bl,λl,dl}, 
which define the interaction force in SFM, for each behavior. 
We use human motion prediction.  

 

[Ferrer, Sanfeliu, 2013] 
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Behavior Estimation of Human Motion  

Approach: 
 
The set of behaviors corresponding to one target is defined as 

Bn = {Bn,q,∀q ≠ n} as the set of parameters that describe the 

interactions of the nth target and its surrounding targets

fn
int (Bn ) = fn,q

int (Bn,q )
q∈Q

∑

The estimated force of interaction is formulated as

fobs
int = fobs − fn

goal (Dn )− fn,q
int (Bn,q )

and we have to find the parameters that minimize

θn,q = argmin( fobs
int − fn,q

int (θ ) )
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Results 

Learning human motion 
behaviors 

Testing human motion 
behaviors 
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PROACTIVE KINODYNAMIC PLANNING 
FOR ROBOT NAVIGATION   
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Proactive Kinodynamic Planning for  
Robot Navigation 

Objective: Extend the navigation taken into account prediction 
of all people movements 

Approach: a planner that predicts human motion and 
minimizes its impact on all those nearby pedestrians. A cost-
based navigation path is calculated while satisfying both 
dynamic and nonholonomic constraints, also referred as 
kinodynamic constraints.  

 

  

•  A kinodynamic solution is calculated. 
•  Proactive planning in which planning uses prediction  
information, and prediction is dependent on the plath  
Calculated. 
•  Prior requirement: a global planner provides a valid  
global path. 
• At each iteration, the planner provides a locally valid  
path. 
• The path computed minimizes the perturbations on the  
scene, according to a cost function.  
 

[Ferrer, Sanfeliu, 2014] 
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Results 

Advanced navigation using Proactive Kinodynamic planning 
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GUIDING AND ACCOMPANY PEOPLE 
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Guiding and Accompany People 

Objective: 
To accompany people in urban areas maintaining a 
specific distance and angle. 

General diagram 
[Garrell, Sanfeliu, 2012] 
[Garrell, Villamizar, Moreno-Noguer, Sanfeliu, 2012] 
[Garrell, Villamizar, Huerta, Sanfeliu, 2013] 
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Simulation Results 

Simulations 
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Real Life Experiment Results 

A S ff llii / UUU bbb RR bb tt

Guiding using social forces 

Guiding people 
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Dabo Accompanying People (teleoperated) 
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LOOKING AND FOLLOWING PEOPLE 
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Looking and Following a Person 

Objective: The robot has to find a person that hides in the 
environment. 

Dabo performs 
the find-and-
follow task with 
a mobile target 
(person) 

Dabo trajectory 

Real scenario 

[Goldhoorn, Sanfeliu, Alquezar, 2013] 
[Goldhoorn, Garrell, Sanfeliu, 2014] Submitted 
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Looking and Following a Person 

Approach: 
It is based on POMDP.  

-  This model contains a set of states (S) which in our case are defined as the 
position of the person and the robot (srobot, sperson) 

-  The robot can do an action of the set A (the robot can move in the eight 
directions o stay in the same place) 

-  Instead of knowing the exact state, an observation of the state is done   

-  In the find-and-follow problem observations are equal to states, but the 
person position (sperson) has a special value hidden when he is not visible.  

-  The POMDP model computes the probability T=P(s’! s,a) to going from one 
state to another one with an action a and the observation Z=P(o! s’,a) . The 
reward function R is used to guide the learning process indicating which are 
the best actions to do in which states, the policy. Our reward function, -drp , is 
decreasing when the person robot distance is decreasing. 

-  Instead of knowing the full state, a probability of being in each possible state 
is stored, the belief.  
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Looking and Following a Person 

Approach: 
-  The starting belief b0 is given 

-  The belief is updated using the observation and the probability 
functions 

-  The best action to execute for each belief state is calculated by 
computing the value function: 

  

 

 

-  Finding the exact solution is intractable, therefore 
approximations methods are used.  

-  In our case we use the POMCP (Montecarlo simulations to 
generate a policy) 

Q(a,b) = b(s)R(s,a)+γ P(o b,a)V (b'

o∈O

∑
s'∈S

∑ )

where V (b) =maxa∈A Q(b,a)
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Adaptive CR-POMCP 

Approach: 
The Adaptive CR-POMCP follower 
which takes into account: 

-  Works in continuous space 

-  Uses the CR-POMCP 

-  When the person is visible uses 
the Heuristic Follower   

Algorithm 1 The POMCP planner. Retrieving children nodes
is noted as Node[a] (for action a for example).
1: function SIMNODE(Node,s,depth)
2: if depth > dmax then return 0
3: else
4: a ← argmaxaNode[a].V + c

√
log (Node.N)
Node[a].N

5: if depth = 1 then Node.B = Node.B ∪ {s}
6: (s′, o, rimmediate) ← G(s, a)
7: if s′ is not final and not Node[a][o] exists and
8: Node[a][o].N ≥ ecount then
9: Add Node[a][o]
10: end if
11: if s′ is not final then
12: if Node[a][o] exists then
13: rdelayed ← SIMNODE(Node[a][o],s′,depth+1)
14: else
15: rdelayed ← ROLLOUT(s′,depth+1)
16: end if
17: else
18: rdelayed ← 0
19: end if
20: rtotal ← rimmediate + γrdelayed
21: Node[a].N ← Node[a].N + 1
22: Node[a].V ← Node[a].V + r−Node[a].V

N
23: Node.N ← Node.N + 1
24: Node.V ← Node.V + r−Node.V

N
25: return r
26: end if
27: end function
28: function ROLLOUT(s,depth)
29: if depth > dmax then return 0
30: else
31: a ∼ πrollout()
32: (s′, o, r) ← G(s, a)
33: return r + γ ROLLOUT(s′,depth+1)
34: end if
35: end function



A. Sanfeliu / Urban Robots 

Simulations and Real Life Experiments 

Real life experiments of Dabo performs the find-
and-follow task with a mobile target (person) 

Dabo trajectory 

Real scenario 

DDaabboo ttrraajjeeccttoorryyyyyyyy 

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRReeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaalllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll scenario 
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ROBOT LEARNING FACES AND 
OBJECTS 
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Robot Learning Faces and Objects 
Objective: 
 

Robot TIBI learns and improves its visual perception capabilities 
by  means of interactions with humans 

Robot TIBI Robot TIBI 

[Villamizar, Andrade, Sanfeliu, Moreno, 2012] 
[Villamizar, Garrell, Sanfeliu, Moreno, 2012] 

[Villamizar, Moreno, Andrade, Sanfeliu, 2010] 



A. Sanfeliu / Urban Robots 

Objective 

Robot TIBI learns to recognize faces and 
objects using human assistance 
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Objective 

   Face Recognition         

Faces 

Robot TIBI learns to recognize faces and 
objects using human assistance 
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Objective 

   Face Recognition        Object Recognition 

Face
s 

3D Objects 

Robot TIBI learns to recognize faces and 
objects using human assistance 
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Objective 

   Face Recognition        Object Recognition 

Face
s 

3D Objects 

Robot TIBI learns to recognize faces and 
objects using human assistance 

The interaction takes a couple 
of minutes (~ 5 min.) 
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Approach 

Online Human-Assisted Learning 
Human-Robot Interaction 
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Approach 

Online Human-Assisted Learning 
Human-Robot Interaction 

Recognition Results 

Robot Camera 

Online Learning: The visual system is updated 
continuously using its own detection hypotheses 

hypothesis 
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Approach 

Online Human-Assisted Learning 
Human-Robot Interaction 

Difficult Cases 

Human-Assisted Learning: The visual 
system requires the human intervetion 
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Approach 

Online Human-Assisted Learning 
Human-Robot Interaction 

Camera Touch Screen wii mote Keyboard 

Difficult Cases 
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Approach 

Online Human-Assisted Learning 
Human-Robot Interaction 

TIBI : Can you tell me if the 
detection is correct? 

Difficult Cases 

Camera Touch Screen wii mote Keyboard 
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Approach 

Online Human-Assisted Learning 
Human-Robot Interaction 

TIBI : Can you tell me if the 
detection is correct? 

Difficult Cases 

Camera Touch Screen wii mote Keyboard 
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Approach 

Online Human-Assisted Learning using Random Ferns 
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Approach 

Online Classifier 

Online Human-Assisted Learning using Random Ferns 
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Approach 

Online Classifier 

 

Online Classifier: 

  • Fast classifier: RFs   

  • Updated continuously 

 

Human Assistance: 

  • Interactive object detection   

  • Reduce drifting 

Human Assistance 

Online Human-Assisted Learning using Random Ferns 
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Approach 

  • Object hypotheses:  detections given by the classifier 
Object Hypothesis 
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Approach 

  • Object candidate: highest-confidence hypothesis (detection) 
Object Hypothesis 
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Approach 

  • New samples: positive and negative samples 
Object Hypothesis 
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Approach 

Online Human-Assisted Learning using Random Ferns 

Online Classifier 
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Approach 

Drifting 

Online Human-Assisted Learning using Random Ferns 

Online Classifier 

Self-learning 
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Approach 

Online Classifier 

 

Human Assistance: 

  • Interactive object detection   

  • Reduce drifting 

Human Assistance 

Online Human-Assisted Learning using Random Ferns 
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Training Step 

Description Human 
Assistance 

Recognition 
Scores 

RFs: Offline Random Ferns 
ORFs: Online Random Ferns 
A-ORFs: Online Human-Assisted Random Ferns 

Detections 
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Training Step 

http://www.youtube.com/watch?feature=player_embedded&v=hdc6PreOuMM 
A Sanfeliu / Urban RobotsA. Sanfeliu / Urban Robots 
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Testing Step 
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Testing Step 

The classifiers are not updated! 
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Testing Step 

http://www.youtube.com/watch?feature=player_embedded&v=hdc6PreOuMM 
SSSSSSSSSSSS f //
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Results with Objects 
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HUMAN-ROBOT TASK 
COLLABORATION  
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Human-Robot Task Collaboration 

Objective: Design models for Human-Robot task 
collaboration.  

General Scheme 
[Retamino and Sanfeliu, 2013] 
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Human-Robot Task Collaboration for Scene 
Mapping 

Objective: Build a through Human-Robot collaboration 

Map building 
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Human Robot Collaboration for Scene 
Mapping 
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AERIAL ROBOTICS FOR EMERGENCY 
SITUATIONS  
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Aerial Robotics for Emergency Situations 

Aerial Robotics Cooperative Assembly System 
(ARCAS) 

ARCAS Objectives: 
 
Development and experimental 
validation of the first 
cooperative free-flying robot 
system for assembly and 
structure construction 

http//:www.arcas.es 
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Application Scenarios 

Flying + Manipulation + Perception + Multi-robot Cooperation 
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Project Objectives 

Project objectives  
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Project Achievements 2nd Year 

Project achievements 2nd Year  
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URBAN ROBOTCS RELATED 
EUROPEAN AND NATIONAL 

PROJECTS  



A. Sanfeliu / Urban Robots 

Robots Collaborating with People in Every 
Day Tasks Projects 

FP6 URUS (2006-2009); UBROB (2007-2010); 
RobTaskCoop (2010-2014), Robot-Int-Coop (2014-2017)  
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Conclusions 

  Robots must include learning and adaptive 
modes to solve real life tasks 

  Human in the loop scheme allows to 
improve robot perception and action 

  Urban robots are going to play an important 
role in our lives and they require the design 
of new architectures, models and methods   

  Robots must deal with uncertainty in 
perception and robot actuation problems in 
real life tasks 
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Urban Robotics: First Steps 
 
 
 
 
 
 

How long we will take to unleash robots in 
cities? 


