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1. The problem of planning in Al

Planning problem
Input: initial state, goal state and applicable actions (operators) in the domain
Output: a plan: a set of partially ordered actions

Example: blocks-world domain

PLAN A

C — B

A B %g—’/CD—.’Q C

Initial situation Goal situation

PLAN:
e Applicable operators: Time step 1: unstack (C,A)
Time step 2: drop (C)
Time step 3: pick-up (B)
Time step 4:stack (B,C)

_ Time step 5: pick-up (A)
- drop a holding block on the table Time step 6: stack (A, B)

- pick-up a block from the table
- unstack a block from another block
- stack a block on top of another block
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1. The problem of planning in Al

Example: Logistics domain
operators: load-truck, unload-truck, drive, load-airplane, unloadairplane, fly

Pittsburgh Boston
PO «—» Airport Airport <—» PO
o, s ]
@ 9 o,
PLAN:

PO <> Airport
Time step 1: load-truck (tr-Pitt P1 Pit+-PO)

fly (plane Pitt-Air Bost-Air)
Los Angeles ﬁ Time step 2: drive-truck (tr-Pitt Pitt-PO Pitt-Air)
load-airplane (plane P2 Bost-Air)
Time step 3: unload-truck (tr-Pitt P1 Pitt-Air)
fly (plane Bost-Air LA-Air)
Time step 4: unload-airplane (plane P2 LA-Air)
Time step 5: fly (plane LA-Air Pitt-Air)
Time step 6: load-airplane (plane P1 Pitt-Air)
Time step 7: fly (plane Pitt-Air LA-Air)
Time step 8: unload-airplane (plane P1 LA-Air)
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1. The problem of planning in Al

Conceptual model. Environment. Controller. Planner.

Planning problem |

& Initial state

l Description of X

Yy

Objectives

Planner

Execution status ‘ J’ Plans

h:S—> 0O

S3

|

location 1 location 2

Controller

Observation function . .
Observations Actions

System X “

T Events

State transition system
>=(S,AE))

S = {states}

A = {actions}

E = {exogenous events}

v = state-transition function
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1. The problem of planning in Al

Conceptual model. Environment. Controller. Planner.

VIDEO

Blocks world with low-level simulation.
Sussman anomaly with a plan failure when picking up block B
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1. The problem of planning in Al

Planning in real-world problems

e Autonomous planning, scheduling, control
— NASA: JPL and Ames

* Remote Agent
Experiment (RAX)

— Deep Space 1

e Mars Exploration
Rover (MER)
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1. The problem of planning in Al

Planning in real-world problems

O-Plan

Artificial Intelligence Applications Institute, University of Edinburgh
http://www.aiai.ed.ac.uk/project/plan/

Spacecraft Mission Planning Systems Management Aids
(Optimum-AlV)

. Business Management Tasks
Unmanned Autonomous Vehicles Help Desks and Assistants

Evacuation operation
Rescue missions
Emergency response

2 VG results - Microsoft Internet Explorer

Fie Edt View Favoites Tools  Help

Qoo - () [x] B (0 Osearh Flpraones @ e s
Adsiress [ hip: d oups. ¥ | [ 60 Lnks

VG results

enoved autonatically

@ Irternet
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1. The problem of planning in Al

Planning in real-world problems

E-learning:
http://adenu.ia.uned.es/adaptaplan/
Forest fire fighting (SIADEX , UGR) . 2N
http://siadex.ugr.es/ S®Ry
V¢ O

Planning tourist visits:
SAMAP

http://iactive.es (nativoo)
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2. State of the art in planning

Classical planning requires all eight of the restrictive assumptions:

AO: Finite

Al: Fully observable
A2: Deterministic
A3: Static

A4: Attainment goals
A5: Sequential plans
A6: Implicit time

A7: Offline planning
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2. State of the art in planning

Representation in planning

Planning Domain Description Language (PDDL):
* |ogic-based language
e popularized by the International Planning Competitions (IPC)

PDDL functionalities:

* object-type hierarchy
* constant objects
e predicates: (on ?x—block ?y —block) =» (on A B)

(in ?x — package ?y — truck) = (in P1 t1)
e numeric fluents (fuel ?x —plane) (energy ?r- rover)

(time-to-walk ?I1 ?12 — location)
» derived predicates
e timed initial literals
* object fluents (on-block ?x - block) — block = (= (on-block B) A)
(position ?x — package) — (either location truck) =2 (= (position P1) t1)

e state-trajectory constraints (hard constraints in form of the modal-logic expressions)
e preferences (soft constraints)
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2. State of the art in planning

Representation in planning

(:action stack
:parameters (?ob - block ?underob - block)
:precondition
(and (clear ?underob)(holding ?0b))
.effect
(and (clear ?ob) (arm-empty) (on ?ob ?underob)
(not (holding ?0b))(not (clear 2underob))))

(:action DRIVE-TRUCK
:parameters (?truck - truck ?loc-from - place ?loc-to - place ?city - city)
:precondition
(and (at ?truck ?loc-from) (in-city ?loc-from ?city) (in-city ?loc-to ?city))
:effect
(and (at ?truck ?loc-to0)) (not (at ?truck ?loc-from)))
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2. State of the art in planning

Representation in planning

state: set of ground atoms (facts, literals, propositions, fluents)
— (on C A) (on A table) (on B table)
8] (clear C)(clear B)(arm-empty)

action: An action ais applicable to a state s'if s satisfies precond(a),
i.e., if precond*(a) c s and precond(a) N s= &

(:action pickup
:parameters (?ob - block)
:precondition
(and (clear ?ob)(on-table ?ob)(arm-empty))
.effect
(and (holding ?0b) (not (clear ?0b))
(not (on-table ?0b))(not (arm-empty))))

The result of applying an action a in state s: (1) Remove d’s negative effects, and (2) add
ds positive effects:
v(s,a) = (s- effects(a)) U effects*(a)
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2. State of the art in planning

Representation in planning

Formally, a planning task is a tuple P=<O,s,,6> where:

e Ois the collection of operators
* 5, is a state (the initial state)
e G is a set of literals (the goal formula)
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2. State of the art in planning

Planning techniques: total-order planning

= precursor: situation calculus

state-based representation

total-order planning => plans are sequences of totally ordered action

planning order = execution order

forward-chaining/backward-chaining reasoning

unstack (C,A

Initial problem state

pick-up (B)

cae X
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2. State of the art in planning

Planning techniques: partial-order planning (POP)

= plan-based representation
= plans are sets of partially ordered actions

planning order # execution order

backward-chaining reasoning

least-commitmment strategy

Partially ordered plans

Sitart
Constraints: /" \
causa!-link | Start -..: ’:ﬂ
ordering constraint Sock Sock
binding constraint | l

LeftShoeOn, g RightShoeOn LefSockOn  FghtockOn

Flaws: Finish - o
open goal /
non-instantiated variable \
threat s, pShostn

Farinb
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2. State of the art in planning

Planning techniques: partial-order planning (POP)

(pos P1 cityB)
_______________________________________________________________________)
N (pos P1 ?c)
(posPlcnyA) \\\\\\\ (pos ?t ?¢)
(posﬁlcnyA)
\ P1 cityB
\ (pos P1 ?t) (pos P1 cityB)
X <. (pos ?t cityB)
\ (posP1?t) "
\ t P1?
‘\ (not (pos c)) (unload P1 ?t c@
) (pos ?t ?c) (pos ?t cityB)
v (pos P1 cityB)
(move ?t ?c cityB) (not (pos P1 ?t))
(pos ?t cityB)

(not (pos ?t ?c))
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2. State of the art in planning

Planning techniques: partial-order planning (POP)

(pos t1 cityA)
(pos P1 cityA)

(pos P1 cityB)
(pos P1 cityA)
(pos t1 cityA)

pos t1 cityA)

! (load P1 t1 cityA) (pos P1 t1) (pos P1 cityB)
“‘- (pos t1 cityB)
\ (pos P1t1)
\ t P1 cityA
\\ (not (pos P1 cityA)) (unload P1 t1 an
! (pos t1 ?c) (pos t1 cityB
v (pos P1 cityB)

(move t1 ?c cityB) (not (pos P1 t1))

(pos t1 cityB)

(not (pos t1 ?c))
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2. State of the art in planning

Planning techniques: partial-order planning (POP)

(pos P1 cityB)

(pos P1 cityA) @
(pos t1 cityA)
) (pos P1 cityA)
(pos P1 cityA) hos t1 cityA)
(pos t1 cityA)

P1 cityB
(pos P1 t1) (pos P1 cityB)

(pos t1 cityB)

(unload P1 t1 utD

(pos P1 cityB)
(not (pos P1t1))

(pos t1 cityA) (pos P111)

(not (pos P1 cityA))

(pos t1 cityA) (pos t1 cityB

(move t1 cityA cityB)

(pos t1 cityB)
(not (pos t1 cityA))
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2. State of the art in planning

Planning techniques: partial-order planning (POP tree)

The search space is an AND/OR tree

Partial plan p

.

Goal g, | | Goal g, Constrain Order
- "'l variable v | """ | tasks
Operator 0, Operator o,
Serializing the tree:
at each AND branch, choose a child Partial plan p
to expand next, and delay |
expanding the other children Goal g,
/
POP tree Operator 0, Operator o,
/ N\
Partial plan p, Partial plan p,
Goal g, Constrain Order Goal g, Constrain Order
"'l variable v | 77" | tasks "' variable v | """ | tasks
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2. State of the art in planning

Planning techniques: partial-order planning (POP tree)

Solve G1

Use existing ste
add operator A ‘ add operator B gsen

SR

Solve G2

Solve t threat

Heuristics:
= flaw-selection heuristics (ZLIFO)
= resolver-selection heuristics (A*: f(IT1)= Steps(I1)+ OpenGoals(I1))
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2. State of the art in planning

Planning techniques: planning-graph approach

= TOP and POP -> very large branching factor
* one way to reduce the branching factor - relaxed problem

= Planning-graph approaches rely on the idea of relaxation of the reachability analysis
— Reachability can be computed exactly through a reachability tree => it cannot be
computed in a tractable way
— Reachability can be approximated through a planning graph => relaxation of the
reachability analysis

= Graphplan: (1) graph expansion (2) solution extraction from the planning graph

procedure Graphplan:

« fork=0,1,2,.. relaxed problem
—( Graph expansion:
* create a “planning graph” that contains k “levels”

—| Check whether the planning graph satisfies a necessary (but insufficient) condition
for plan existence

— If it does, then do solution extraction.

— backward search, modified to consider only the actions in
the planning graph

— if we find a solution, then return it
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2. State of the art in planning

Planning techniques: planning-graph approach

e Search space for a relaxed version of the planning problem

e Alternating layers of ground literals and actions

— Nodes at action-level i: actions that might be possible to execute at time J

— Nodes at state-level i: literals that might possibly be true at time i

— Edges: preconditions and effects

state-level I-1

action-level i

state-level i

state-level O (the literals true in s)

I

|

preconditions

. . . effects
A maintenance action for a literal I.
It represents what happens if we
don’t change I.
Planificacion Automatica, EVIA, 3 Septiembre 2014 pp. 25



2. State of the art in planning

Planning techniques: planning-graph approach

mv(cl,cB,cA)

pos(c1,cB) no-op(pos(c1,cB)) pos(cl,cB)

pos(cl,cA) no—op(pos(cl,cA))7/4 pos(cl,cA) no-op(pos(cl,cA)) pos(cl,cA)
mv(cl,cA,cB) 2 mv(cl,cA,cB)

pos(pl,cA) n0-0p(pos(p1,cA)——— pos(pl,cA) no-op(pos(pl,cA)) pos(pl,cA)
cg(pl,cl,cA) -7 cg(pl,cl,cA)

en(pl,cl) 0-op(en(pl,cl)) en(pl,cl)

dcg(pl,cl,cB)
dcg(pl,cl,cA)

pos(pl,cB)

Pro Apl Prj Ap Pz

Planificacion Automatica, EVIA, 3 Septiembre 2014 pp. 26



2. State of the art in planning

Planning techniques: planning-graph approach (Mutual exclusion)

C 0 O 0 EJ 0

D\.".\—\ G\.<D a N\ .<D

& 8 O O CJ &

o C 0 3 0 0

» J—7cC O H—0 ») B—70C

0 o oz 0 0
Inconsistent Competing Inconsistent
Effects Interference Needs Support

* Two actions at the same action-level are mutex if
— Inconsistent effects: an effect of one negates an effect of the other
— Interference: one deletes a precondition of the other
— Competing needs: they have mutually exclusive preconditions

* Otherwise they don’t interfere with each other \ :
— Both may appear in a solution plan Recursive

propagation

e Two literals at the same state-level are mutex if
, _ _ of mutexes
— Inconsistent support: one is the negation of the other,
or all ways of achieving them are pairwise mutex
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2. State of the art in planning

Planning techniques: planning-graph approach (Solution extraction)

Check to see whether there’s a possible solution:
(1) All of the goals appear at a proposition level and
(2) None are mutex with each other

procedure Solution-extraction(g,j)
if j=0 then return the solution
for each literal /in g

nondeterministically choose an action

to use in state s, to achieve /

-~

The set of goals we are
trying to achieve

The level of the state S|

A real action or a maintenance action

if any pair of chosen actions are mutex

then backtrack

g’ := {the preconditions of
the chosen actions}

Solution-extraction(g’, j—1)
end Solution-extraction

/

state- action- state-
level level level
i-1 [ [
.\ ® -
e ..
$ ...
L . Let
s . san
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2. State of the art in planning

Planning techniques: planning-graph approach (Discussion)

 Advantage:
— Planning graph in polynomial time

— The backward-search part of Graphplan—which is the hard part—will only look at
the actions in the planning graph

— smaller search space than POP; thus faster

* Disadvantage:

— To generate the planning graph, Graphplan creates a huge number of ground atoms
(many of them may be irrelevant)

— The mutual exclusion rules do not guarantee to find all mutex relationships, but
usually find a large number of them (in fact, determining all mutex relationships can
be as hard as finding a plan).

— Mutual exclusion rules only find binary mutex but there also exists other higher-
order mutex, eg. ternary mutex ...

e Forclassical planning, the advantage outweighs the disadvantage
— GraphPlan solves classical planning problems much faster than POP
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2. State of the art in planning

Planning techniques: heuristic planning

= state-based representation, forward search
= node-selection heuristic

e Suppose we're searching a tree in which each edge (s,s’)
has a cost c(s,s’)
— |If pis a path, let ¢(p) = sum of the edge costs
— For classical planning, this is the length of p

e For every state s, let
— g(s) = cost of the path from s, to s
— h*(s) = least cost of all paths from s to goal nodes
—  f*(s) = g(s) + h*(s) = least cost of all paths
from s, to goal nodes that go through s

e Suppose h(s) is an estimate of h*(s)
— Letf(s) =g(s) + h(s)
* f(s) is an estimate of f*(s)
— his admissible if for every state s, 0 < h(s) < h*(s)
— If his admissible then fis a lower bound on f*

h*(s)

N

%

g(s)
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2. State of the art in planning
Planning techniques: heuristic planning

Heuristics derived from planning graphs

In the graph, there are alternating layers of ground literals and actions

The number of “action” layers is a lower bound on the number of actions in the plan

Construct a planning graph, starting at s

h(g:): estimate to achieve g,from s

h(g:)= level of the first layer that “possibly achieves” g,
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2. State of the art in planning
Planning techniques: heuristic planning

Heuristics derived from planning graphs for a set of goals G

— The max level heuristic takes the maximum level cost of any of the goals (admissible,
not very accurate). hmax(G)=max,_g h(g)

— The sum level heuristic returns the sum of the levelcosts of the goals (inadmissible,
works well in practice). hsum(G)=2. g<G h(g)

— The max, level heuristic takes the maximum level at which coexist any pair of goals.
hmax,(G)=.xe1 g21cc N(81AE2)

— The max, level heuristic takes the maximum level at which coexist any k goals.
hmax, (G)= e 02, .. aktec NBLAB2A ... Agk)
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2. State of the art in planning
Planning techniques: heuristic planning

Heuristics derived from planning graphs

e Heuristics used by forward state-space planners (like FF)

Application of the heuristic over each state in the tree

Planning graph + mutex calculation over each state => very costly process

Computing heuristics on a relaxed planning graph:
— Ignoring negated effects
— No mutex calculation

FF’s heuristic: #actions of a plan calculated from the relaxed planning graph

Planificacion Automatica, EVIA, 3 Septiembre 2014 pp. 33



2. State of the art in planning
Planning techniques: heuristic planning

FF planner (Jorg Hoffmann, Bernhard Nebel: The FF Planning System: Fast Plan Generation

Through Heuristic Search. J. Artif. Intell. Res. (JAIR) 14: 253-302 (2001))

Use a heuristic function h(s) = relaxed plan
Don’t want an A*-style search (takes too much memory)
Instead, use a hill-climbing procedure:

until we have a solution, do
expand the current state s
s := the child of s for which h(s) is smallest
(i.e., the child we think is closest to a solution)

There are some ways FF improves on this
e.g. a way to escape from local minima

breadth-first search, stopping when a node with lower cost is found

Can’t guarantee how fast it will find a solution,

or how good a solution it will find
However, it works pretty well on many problems

AN

A
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2. State of the art in planning
Planning techniques: decomposition planning

= Traditional planning decomposition:
* 6= ug,
= Concurrent generation of a plan P; for each goal g;
= Solution plan: plan merge to combine the plans P,

= A different planning decomposition approach

intermediate
state

sub-p:robleml sub-problemz sub-pfoblemS sub-QrobIem4
29— [0—0—0}— O~ 8
PHTPT Plan-P2 Plan P3 PTan P2
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2. State of the art in planning
Planning techniques: decomposition planning

e Alandmark is a literal that must be true in ALL solution plans of a planning task
(Hoffman, Porteus, Sebastia. Ordered Landmarks in Planning. J. Artif. Intell. Res. (JAIR) 22: 215-278

(2004))

e Landmarks of a planning task are extracted through a Relaxed Planning Graph

Initial state (1)

—
\

13

,B/

pl

e

pl
C] - \
p2
g3 /
i
g2
p2

e Landmarks Graph: landmarks along with neccessary/reasonable orders

Final state (G)

* Landmark is a very relevant concept for solving planning tasks and has been widely
exploited in the design of heuristic functions
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2. State of the art in planning
Planning techniques: planning abstractions

* Reduce the level of detail, abstract a problem-solving task into higher level
representations.

* Airplane transportation: flight schedules on a large network of airports, routes, crew, airport
staff, fuel costs, airport local configuration, etc

* Abstraction can reduce branching factor, solution length and likelihood of encountering
a deadlock

Goal states
(package on the

State variables and values:
* (pos package) =L
e (pos truckA) =R

* (pos truckB) = R cost(l,G)=4 transitions

Transition Graph
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2. State of the art in planning
Planning techniques: planning abstractions

Two possible abstractions:

estimate from 1 to G =3 estimate from | to G = 2
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2. State of the art in planning
Planning techniques: planning abstractions (merge & shrink)

e Helmert, Haslum, Hoffmann, Nissim: Merge-and-Shrink Abstraction: A Method for
Generating Lower Bounds in Factored State Spaces. J. ACM 61(3): 16 (2014)

* Abstractions on individual state variables
* Merge the individual projections into a new product abstraction (&)

* Due to memory limitations, the product abstractions can be too large . In this case we
can shrink them by abstracting them further using any abstraction on an intermediate
result, then continue the merging process.
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2. State of the art in planning
Planning techniques: planning abstractions (merge & shrink)

abstraction (pos package)

abstraction (pos truckA)

product abstraction (pos package) ® (pos truckA)
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2. State of the art in planning

Planning techniques: planning abstractions (merge & shrink)

Shrink

Now, on the result of the last shrink we can merge more variables abstractions (pos truckB)
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2. State of the art in planning
Planning techniques: Hierarchical Task Network Planning (HTN)

= Action abstraction and plan decomposition hierarchies
Hierarchical organization of 'actions'
lowest level reflects directly executable actions (primitive actions)

Planning starts with complex action on top
Plan constructed through action decomposition
Substitute complex action with plan of less complex actions

Tasks (activities) rather than goals
Methods to decompose tasks in subtasks
Enforce constraints

Backtrack if necessary
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2. State of the art in planning
Planning techniques: Hierarchical Task Network Planning (HTN)

Task: | travel(x,y)

A%

-

Method: taxi-travel(x,y)

Method: air-travel(x,y)

get-taxi

ride(x,y) [—>|pay-driver

get-ticket(a(x),a(y))

\_

N

) fly(a(x).a(y))
travel(x,a(x))

~

» travel(a(y),y)

)

travel(x,y)

/‘

air-travel(x,y)

long-distance(x,y)

_— N\ T~

buy-ticket (a(x), a(y)) | [travel (x, a(x))

fly (a(x), a(y))||travel (a(y), y)

N~ —

SN—__
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3. Beyond classical planning

Temporal planning

Planning with resources (discrete, continuous)
Planning and Scheduling

Planning under uncertainty

Multi-agent planning

Planning in robotics

= ...and more
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3. Beyond classical planning
Temporal planning

= Durative actions (actions with duration)
= PDDL2.1 model:

SCond,| v, ECond,
|
)

!

SEff, EEff,

(:durative-action board
:parameters (?p - person ?a - aircraft ?c - city)
:duration (= ?duration 20)
:condition (and (at start (at ?p ?c)) (over all (at ?a ?c)))
.effect (and (at end (in ?p ?a))
(at start (not (at ?p ?¢))))
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3. Beyond classical planning

Temporal planning

» Traditional conditions/effects are annotated with the time point of their occurrence
= Multiple choices of concurrency

(at rob A) (free B)

\/

(move rob A B)

I T (at rob B)

—(at rob A) ' '
(walking rob)

(not (walking rob))
(free A)

(not (free B))
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3. Beyond classical planning
Temporal planning

= PDDL3.0 enables to specify deadlines:

Truck7 must be in cityA before 250 time units (within 250 (at t7 cA))

Whenever the fuel of a truck is below 20, it should be | (forall (>t - truck)

: e . . (always-within 10
at the refueling post within 10 time units (< (fuel 21) 20) (at 2t fuel-post))))

A truck can visit a certain city only after having visited (forall (?t - truck)
another particular one (sometime-before (at ?t cl)(at ?1 c2)))

= More expressive temporal models:
- conditions and effects can be temporally quantified within the interval of execution of the
action (planners like ZENO, Sapa, VHPOP, CPT)

- deadline goals, temporal windows, exogenous events, persistence, quantitative temporal
constraints

- planning solved as a Constraint Satisfaction Problem (CSP)

= Temporal planners:

- Temporal Graphplan: TPG, TPSYS (PDDL2.1)

— Action graphs: LPG (PDDL2.1)

- Heuristic-based: Sapa, TP4

— POP: HSTS, ZENO, VHPOP (richer models), OPTIC (PDDL3.0), TempLM (PDDL3.0)
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3. Beyond classical planning

Planning and Scheduling

When and how
What to do to do it

. Set of , Scheduled
Goal »(F'Iannmg)* aetions *(Schedullng]* olan

resources:
e can be modelled as parameters of an action

problem: planning algorithms tries out all possibilities (inefficient)
* alternative approach:

allow unbound resource variables in plan (planning)

find assignment of resources to actions (scheduling)

resource variables: modified by actions in relative ways
example: move(r,/I’): fuel level changes from f to f-f’

Let abe an action in a planning domain:
attached resource constraints:
required resource: r
guantity of resource required: g
reusable: resource will be available to other actions after this action is completed
consumable: resource will be consumed when action is complete
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3. Beyond classical planning
Planning and Scheduling

= PDDL2.1 enables to handle continuous resources (e.g., energy, benefit, ...) as numeric
fluents

(:durative-action fly
:parameters (?a - aircraft ?cl ?c2 - city)
duration (= ?duration (/ (distance ?cl ?c2) (slow-speed ?a)))
:condition (and (at start (at ?a ?cl))
['(at start (>= (fuel ?a) (* (distance 2cl 2c2) (slow-burn 2a))))) |
effect (and (at start (not (at ?a ?cl)))
(at end (at ?a ?c2))

(at end (increase total-fuel-used (* (distance ?cl ?c2) (slow-burn ?a))))
(at end (decrease (fuel ?a) (* (distance ?cl ?c2) (slow-burn ?a))))))

(-durative-action refuel
:parameters (?a - aircraft ?c - city)
duration (= ?duration (/ (- (capacity ?a) (fuel ?a)) (refuel-rate ?a)))
:condition (and K3f'§T5Ff'Z3'ZEEEﬁETfV’?ES’ZTUET'73777
(OVET arr (ac ’a ’CJ))
effect |(at end (assign (fuel 7a) (capacity 7a))))

= Planning with numeric variables and multi-objective planning (minimize distance, fuel, total
time, etc.

= Planning techniques based on Relaxed Planning Graph: SAPA, SimPlanner, TPSYS, Metric-FF
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3. Beyond classical planning

Planning in non-deterministic environments

® Non-determinism:

= Uncertainty in the action effects, multiple possible
outcomes (action failures, exogenous events)

= Uncertainty in the initial state (the current state is in
general not known)

= Nondeterministic systems are like Markov Decision
Processes (MDPs), but without probabilities
attached to the outcomes

= Useful if accurate probabilities aren’t available,
probability calculations would introduce
inaccuracies

d

52

= Nondeterministic system: a triple 2 = (S, A, v)
S =finite set of states
A = finite set of actions
V:SXxA—>2°

move(r1,I1,12)
(21" L' La)anow

»

Start [ g4
at(r1,11)

k

We can also have nondeterministic policies :
multiple actions for some states (1: S — 24)
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at(r1,12) M <
i

move(r1, 13,12

move(ri,|4,11)

move(ri,|1,l4)

grasp(c)

| 83

i

move(ri,l4,13)

at(r1,13)
3 &
g @3 f‘f
=Rk
EZES

. 54

-

[a][b]

Intended
outcome

4
ARY,

Unintended
outcome

at(r1,15)

A

Goal at[r1,|4}

PP. QU



3. Beyond classical planning
Planning in non-deterministic environments

= Partial observability:

The state of the system is only partially visible at run-time

Different states of the system are indistinguishable for the controller

Some variables may never be observable by the controller (e.g., microprocessor)
Some variables can be observable in some states or only after some ‘sensing
actions’ (e.g., robot ignores if door is open in another room, web service
composition)

Observations returns sets of states rather than single states (power set)

= Extended goals:

Goals need to specify requirements that take into account nondeterminism and
possible failures
For instance, guarantee that some safe state is maintained

= the robot must avoid dangerous places

= the tank temperature must never be above 402C
Extended goal: complex goal involving temporal conditions, conditions to be
maintained rather than reached
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3. Beyond classical planning

Planning in non-deterministic environments

Planning based on model
checking

Planning based on Markov
Decision Processes (MDP)

Characteristics

non-determinism
partial observability
extended goals

non-determinism
partial observability
extended goals
probabilities

Planning domain

non-deterministic state-transition
system

stochastic system

Extended goals

formulas in temporal logic*
(conditions on the entire plan execution)

utility functions (e.g., costs and rewards)
(preferences on the entire plan execution)

Plans conditional plans policies
Planning control the evolution of the system optimization problem

(check temporal formulas) (maximize the utility function)
Techniques symbolic model checking techniques that | probability distribution over the state

use Ordered Binary Decision Diagrams
(OBDD)

space (belief states)

* Formulas in temporal logic are also used to express reachability goals
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3. Beyond classical planning
Multi-agent Planning (MAP)

= MAP is a social approach to planning by which multiple intelligent entities work together
to solve planning tasks that they are not able to solve by themselves, or to at least
accomplish them better by cooperating

= Distribution of information:
= Spatially: agents have different knowledge of the problem
= Functionally: agents have different capabilities
= Privacy

» Cooperative MAP task: Ty .p={AG,I,A G}
* AG: set of agents
I: initial state of the planning task (UT')
A: set of actions of the agents (UA)
G: set of goals of Ty 4p; & is common to all agents in AG, that is, all of the agents are aimed at
solving G
Classical planning techniques extended to multi-agent context

= Planning for self-interested agents:
* Agents have different goals or preferences (soft goals)
* Agents execute their plans in a common environment =» conflicts
* Techniques: social choice and game-theory

Planificacion Automatica, EVIA, 3 Septiembre 2014 pp. 53



Planificacion Automatica

Escuela de Verano de Inteligencia Artificial

Eva Onaindia
3 Septiembre 2014

Planificacion Automatica, EVIA, 3 Septiembre 2014 pp. 54



	Planificación Automática��Escuela de Verano de Inteligencia Artificial��Eva Onaindía�3 Septiembre 2014���
	Número de diapositiva 2
	Número de diapositiva 3
	1. The problem of planning in AI
	Número de diapositiva 5
	Número de diapositiva 6
	Número de diapositiva 7
	Número de diapositiva 8
	Número de diapositiva 9
	Número de diapositiva 10
	Número de diapositiva 11
	Número de diapositiva 12
	Número de diapositiva 13
	Número de diapositiva 14
	Número de diapositiva 15
	Número de diapositiva 16
	Número de diapositiva 17
	Número de diapositiva 18
	Número de diapositiva 19
	Número de diapositiva 20
	Número de diapositiva 21
	Número de diapositiva 22
	Número de diapositiva 23
	Número de diapositiva 24
	Número de diapositiva 25
	Número de diapositiva 26
	Número de diapositiva 27
	Número de diapositiva 28
	Número de diapositiva 29
	Número de diapositiva 30
	Número de diapositiva 31
	Número de diapositiva 32
	Número de diapositiva 33
	Número de diapositiva 34
	Número de diapositiva 35
	Número de diapositiva 36
	Número de diapositiva 37
	Número de diapositiva 38
	Número de diapositiva 39
	Número de diapositiva 40
	Número de diapositiva 41
	Número de diapositiva 42
	Número de diapositiva 43
	Número de diapositiva 44
	Número de diapositiva 45
	Número de diapositiva 46
	Número de diapositiva 47
	Número de diapositiva 48
	Número de diapositiva 49
	Número de diapositiva 50
	Número de diapositiva 51
	Número de diapositiva 52
	Número de diapositiva 53
	Planificación Automática��Escuela de Verano de Inteligencia Artificial��Eva Onaindía�3 Septiembre 2014���

