COMPUTATIONAL INTELLIGENCE: CURRENT STATE AND CHALLENGES

Pedro Larrañaga

pedro.larranaga@fi.upm.es
http://cig.fi.upm.es/

Computational Intelligence Group Departamento de Inteligencia Artificial Universidad Politécnica de Madrid

EVIA 2014 · A Coruña, September 3, 2014

Outline

Outline

2 Current State

Computational Intelligence

Towards a Definition

- Set of nature-inspired computational methodologies and approaches
- Address complex real-world problems
- Traditional approaches, i.e., explicit statistical modeling, are ineffective or infeasible
- Many such real-life problems are not considered to be well-posed problems mathematically

Computational Intelligence

Machine Learning + Metaheuristic-based Optimization

- Machine learning as the field of study that gives computers the ability to learn without being explicitly programmed (Samuel, 1959): supervised classification, clustering, associations
- Metaheuristic-based optimization

Supervised classification. Estimation methods. Train and test

Supervised classification. *k*-NEAREST NEIGHBORS

Supervised classification. NAIVE BAYES

Predictor variables are conditionally independent given C

$$P(c|x_1,...,x_n) \propto P(C=c) \prod_{i=1}^n P(X_i=x_i|C=c)$$

$$c^* = arg max_c P(C = c) \prod_{i=1}^n P(X_i = x_i | C = c)$$

Supervised classification. LOGISTIC REGRESSION

$$\pi_j = P(C = 1 | \mathbf{x}_j) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_{j1} + \dots + \beta_n x_{jn})}}$$

$$\Rightarrow 1 - \pi_j = P(C = 0 | \mathbf{x}_j) = \frac{1}{1 + e^{(\beta_0 + \beta_1 x_{j1} + \dots + \beta_n x_{jn})}}$$

Clustering. HIERARCHICAL CLUSTERING

Clustering. PROBABILISTIC CLUSTERING: finite mixture models with EM

Associations. BAYESIAN NETWORKS

Evidence: "Smoker = no"

Outline

CHESS

JEOPARDY!

GESTURE RECOGNITION

FACIAL EXPRESSIONS

ROBOT SOCCER

BRAIN COMPUTER INTERFACE

AUTONOMOUS CAR

BIOINFORMATICS

Top 10 Algorithms in Data Mining

Knowledge Information Systems (2008) 14:1-37

- **O** C4.5 (Quinlan, 1993)
- The k-means algorithm (Lloyd, 1957)
- Support vector machines (Vapnik, 1995)
- The Apriori algorithm (Agraval and Srikant, 1994)
- The EM algorithm (Dempster et al., 1977)
- PageRank algorithm (Brin and Page, 1998)
- AdaBoost (Freund and Schapire, 1995)
- k-nearest neighbors (Fix and Hodges, 1951)
- Naive Bayes (Minsky, 1961)
- CART: Classification and Regression Trees (Breiman et al., 1984)

Outline

2 Current State

From the International Congress of Mathematics (Paris, 1900) to SEMATICA (Madrid, 2013)

10 Challenging Problems

From the International Congress of Mathematics (Paris, 1900) to SEMATICA (Madrid, 2013)

10 Challenging Problems

2. Variants of Supervised Classification. Class imbalance

2. Variants of Supervised Classification. Positive Labels

2. Variants of Supervised Classification. Positive Labels

2. Variants of Supervised Classification. Semi-supervised

2. Variants of Supervised Classification. Semi-supervised

2. Variants of Supervised Classification. Probabilistic labels

morpholog. variables				clas	class	
cell	X ₁		X ₂₈₈₅	E ₁	 E ₄₂	С
1	10.1		6.6	trans	 intra	38-4
2	3.7		7.7	intra	 trans	24-18
3	5.9		9.2	intra	 intra	35-7
4	11.2		10.1	intra	 intra	10-32
240	13.6		5.7	intra	 intra	3-39

3. Multitarget Prediction. Multilabel Classification

X_1	<i>X</i> ₂	X_3	X_4	X_5	С
3.2	1.4	4.7	7.5	3.7	1
2.8	6.3	1.6	4.7	2.7	0
7.7	6.2	4.1	3.3	7.7	1
9.2	0.4	2.8	0.5	3.9	0
5.5	5.3	4.9	0.6	6.6	1

X_1	X_2	X_3	X_4	X_5	C ₁	C_2	C_3	C_4
3.2	1.4	4.7	7.5	3.7	1	0	1	1
2.8	6.3	1.6	4.7	2.7	0	0	1	0
7.7	6.2	4.1	3.3	7.7	1	0	1	1
9.2	0.4	2.8	0.5	3.9	0	1	0	0
5.5	5.3	4.9	0.6	6.6	1	1	0	1

3. Multitarget Prediction. Multilabel Classification

3. Multitarget Prediction. Multilabel Classification

3. Multitarget Prediction. Multidimensional Classification

3. Multitarget Prediction. Multioutput Regression

<i>X</i> ₁	<i>X</i> ₂	X_3	X_4	X_5	Y
3.2	1.4	4.7	7.5	3.7	1.7
2.8	6.3	1.6	4.7	2.7	0.4
7.7	6.2	4.1	3.3	7.7	1.9
9.2	0.4	2.8	0.5	3.9	0.2
5.5	5.3	4.9	0.6	6.6	1.7

X_1	X_2	X_3	X_4	X_5	Y ₁	Y_2	Y_3	Y_4
3.2	1.4	4.7	7.5	3.7	1.8	0.2	1.8	1.2
2.8	6.3	1.6	4.7	2.7	0.3	0.4	1.1	0.1
7.7	6.2	4.1	3.3	7.7	1.3	0.4	1.1	1.9
9.2	0.4	2.8	0.5	3.9	0.7	1.1	0.1	0.9
5.5	5.3	4.9	0.6	6.6	1.1	1.2	0.7	1.2

4. Clustering. Multipartition. Subspace Clustering

5. Regularization seament regularization solution problem approximate sparsity analysis algorithm linear_{set} g analysis lasso + condition proposition complexity pattern $\hat{\boldsymbol{\beta}} = \operatorname{argmin}_{\boldsymbol{\beta}} ||\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}||_{2}^{2} + \lambda ||\boldsymbol{\beta}||_{1}$ lasso: $\hat{\boldsymbol{\beta}} = \operatorname{argmin}_{\boldsymbol{\beta}} ||\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}||_{2}^{2} + \lambda \sum_{i=1}^{p} w_{i}|\beta_{i}|$ adaptive lasso: $\hat{\boldsymbol{\beta}} = \operatorname{argmin}_{\boldsymbol{\beta}} || \boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta} ||_{\infty} + \lambda || \boldsymbol{\beta} ||_{1}$ Dantzig: $\hat{\boldsymbol{\beta}} = \operatorname{argmin}_{\boldsymbol{\beta}} || \boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta} ||_{2}^{2} + \lambda_{1} || \boldsymbol{\beta} ||_{1} + \lambda_{2} || \boldsymbol{\beta} ||_{2}^{2}$ elastic net: $\hat{\boldsymbol{\beta}} = \operatorname{argmin}_{\boldsymbol{\beta}} ||\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}||_{2}^{2} + \lambda \sum_{i=1}^{J} ||\boldsymbol{\beta}_{i}||_{\boldsymbol{W}_{i}}$ group lasso:

6. Spatial Data

7. Directional Data

7. Directional Data. Books

8. Data Streams. Concept Drift

9. Performance Measures. Decision Surfaces

10. Metalearning

Outline

COMPUTATIONAL INTELLIGENCE

10 CHALLENGES

- Big data
- 2 Variants of supervised classification
- Multitarget prediction
- Clustering
- Regularization
- Spatial data
- Oirectional data
- Data streams
- Performance measures
- Metalearning

COMPUTATIONAL INTELLIGENCE: CURRENT STATE AND CHALLENGES

Pedro Larrañaga

pedro.larranaga@fi.upm.es
http://cig.fi.upm.es/

Computational Intelligence Group Departamento de Inteligencia Artificial Universidad Politécnica de Madrid

EVIA 2014 · A Coruña, September 3, 2014