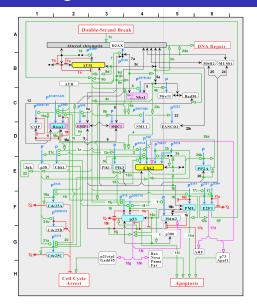
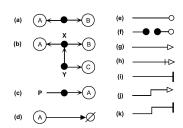
Molecular Interaction Automated Maps

Robert Demolombe Luis Fariñas del Cerro Naji Obeid

Université de Toulouse and CNRS, IRIT, Toulouse, France

Defining the Problem





Metabolic network formed by long sequences of positive (activation) and negative (inhibition) biochemical reactions.

Content

Content

- Logical model capable of describing general metabolic pathways and their possible extensions.
- Translation procedure for eliminating first order variables and equality predicates.

Content

Content

- Logical model capable of describing general metabolic pathways and their possible extensions.
- Translation procedure for eliminating first order variables and equality predicates.

Language

State Predicates

- A(x): x is Active.
- I(x): x is Inhibited.
- P(x): x is Present.

Language

State Predicates

- A(x): x is Active.
- I(x): x is Inhibited.
- P(x): x is Present.

State Axioms

$$\neg (A(x) \land I(x)) . \tag{1}$$

$$P(x) \leftrightarrow A(x) \lor I(x)$$
 (2)

Capacity of Activation

CA(y,x): y can activate x.

Capacity of Activation

CA(y,x): y can activate x.

Effective Capacity of Activation

 $CA^{e}(y,x)$: y can effectively activate x.

Capacity of Activation

CA(y,x): y can activate x.

Effective Capacity of Activation

 $CA^{e}(y,x)$: y can effectively activate x.

Direct or Indirect Capacity of Activation

 $CA^{di}(y,x)$: y can directly or indirectly activate x.

Capacity of Activation

CA(y,x): y can activate x.

Effective Capacity of Activation

 $CA^{e}(y,x)$: y can effectively activate x.

Direct or Indirect Capacity of Activation

 $CA^{di}(y,x)$: y can directly or indirectly activate x.

Capacity to Inhibit the Capacity of Activation

CICA(z, y, x): z can inhibit the capacity that y has to activate x.

Capacity of Inhibition

CI(y,x): y can inhibit x.

Capacity of Inhibition

CI(y,x): y can inhibit x.

Effective Capacity of Inhibition

 $CI^e(y,x)$: y can effectively inhibit x.

Capacity of Inhibition

CI(y,x): y can inhibit x.

Effective Capacity of Inhibition

 $CI^e(y,x)$: y can effectively inhibit x.

Direct or Indirect Capacity of Inhibition

 $CI^{di}(y,x)$: y can directly or indirectly inhibit x.

Capacity of Inhibition

CI(y,x): y can inhibit x.

Effective Capacity of Inhibition

 $CI^e(y,x)$: y can effectively inhibit x.

Direct or Indirect Capacity of Inhibition

 $CI^{di}(y,x)$: y can directly or indirectly inhibit x.

Capacity to Inhibit the Capacity of Inhibition

CICI(z, y, x): z can inhibit the capacity that y has to inhibit x.

Language - Activation Axiom

Activation Axiom

$$\forall x \forall y (A(y) \land CA^{e}(y, x) \rightarrow A(x))$$
 (3)

With:

$$CA^{e}(y,x) \stackrel{\text{def}}{=} CA(y,x) \land \neg \exists z (CICA(z,y,x) \land A(z))$$
 (4)

Language - Inhibition Axiom

Inhibition Axiom

$$\forall x \forall y (A(y) \land CI^{e}(y, x) \to I(x))$$
 (5)

With:

$$CI^{e}(y,x) \stackrel{\text{def}}{=} CI(y,x) \land \neg \exists z (CICI(z,y,x) \land A(z))$$
 (6)

Language - Causal Relations - Activation

Figure: Direct or Indirect Capacity of Activation

Activation

From

$$\forall x \forall y (CA^e(y,z) \lor \exists z (CA^{di}(y,z) \land CA^e(z,x)) \leftrightarrow CA^{di}(y,x)). \tag{7}$$

We can deduce:

$$\forall x \forall y (A(y) \land CA^{di}(y, x) \to A(x))$$
 (8)

Language - Causal Relations - Inhibition

Figure: Direct or Indirect Capacity of Inhibition

Inhibition

From

$$\forall x \forall y (CI^e(y,z) \lor \exists z (CA^{di}(y,z) \land CI^e(z,x)) \leftrightarrow CI^{di}(y,x)). \tag{9}$$

We can deduce:

$$\forall x \forall y (A(y) \land CI^{di}(y, x) \to I(x))$$
 (10)

Capacity of Phosphorylation

CP(z, y, s, x): z can phosphorylate y on site s, where x is the result of the phosphorylation.

Capacity of Phosphorylation

CP(z, y, s, x): z can phosphorylate y on site s, where x is the result of the phosphorylation.

Effective Capacity of Phosphorylation

 $CP^e(z, y, s, x)$: z can effectively phosphorylate y on site s, where x is the result of the phosphorylation.

Capacity of Phosphorylation

CP(z, y, s, x): z can phosphorylate y on site s, where x is the result of the phosphorylation.

Effective Capacity of Phosphorylation

 $CP^e(z, y, s, x)$: z can effectively phosphorylate y on site s, where x is the result of the phosphorylation.

Direct or Indirect Capacity of Phosphorylation

 $CP^{di}(z,y,s,x)$: z can directly or indirectly phosphorylate y on site s, where x is the result of the phosphorylation.

Capacity of Phosphorylation

CP(z, y, s, x): z can phosphorylate y on site s, where x is the result of the phosphorylation.

Effective Capacity of Phosphorylation

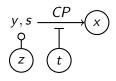
 $CP^e(z, y, s, x)$: z can effectively phosphorylate y on site s, where x is the result of the phosphorylation.

Direct or Indirect Capacity of Phosphorylation

 $CP^{di}(z, y, s, x)$: z can directly or indirectly phosphorylate y on site s, where x is the result of the phosphorylation.

Capacity to Inhibit the Capacity of Phosphorylation

CICP(t, z, y, s, x): t can inhibit the capacity that z has to phosphorylate y.



Activation Axiom

$$\forall x \forall y \forall s \forall z (A(z) \land A(y) \land CP^{e}(z, y, s, x) \rightarrow A(x))$$
(11)

With:

$$CP^{e}(z, y, s, x) \stackrel{\mathsf{def}}{=} CP(z, y, s, x) \land \neg \exists t (CICP(t, z, y, s, x) \land A(z))$$
 (12)

Language - Causal Relations - Activation Updated

Figure: Direct or Indirect Capacity of Activation - Updated

Activation

$$\forall x \forall y (CA^e(y,z) \vee \exists z (CA^{di}(y,z) \wedge CA^e(z,x)) \leftrightarrow CA^{di}(y,x)).$$

And

$$\forall x \forall y (\mathit{CA}^e(y,z) \vee \exists w \exists s \exists z (\mathit{CP}^{di}(y,w,s,z) \wedge \mathit{CA}^e(z,x)) \leftrightarrow \mathit{CA}^{di}(y,x)).$$

Language - Causal Relations - Phosphorylation

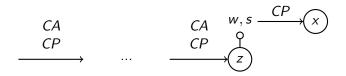


Figure: Direct or Indirect Capacity of Activation - Updated

Activation

$$\forall x \forall y \forall w \forall s (CP^e(y, w, s, x) \vee \exists z (CA^{di}(y, z) \wedge CP^e(z, w, s, x)) \leftrightarrow CP^{di}(y, w, s, x))$$

And

$$\forall x \forall y \forall w \forall s (\mathit{CP}^e(y, w, s, x) \vee \exists w_1 \exists s_1 (\mathit{CP}^{di}(y, w_1, s_1, z) \wedge \mathit{CP}^e(z, w, s, x)) \leftrightarrow \mathit{CP}^{di}(y, w, s, x))$$

Domain formulas

$$\delta ::= P(\overline{x}, \overline{c})|\varphi \vee \psi|\varphi \wedge \psi|\varphi \wedge \neg \psi . \tag{13}$$

Variables \overline{x} and constants \overline{c} denote $x_1,...,x_n$ and $c_1,...,c_m$ respectively.

The set of free variables in φ is the same as the set of free variables in ψ for $\varphi \vee \psi$.

The set of free variables in ψ is included in the set of free variables in φ for $\varphi \wedge \neg \psi$.

There are no special constraints for $\varphi \wedge \psi$.

Restricted formulas

$$\delta ::= \forall \overline{x}(\varphi \to \psi) | \exists \overline{x}(\varphi \land \psi) . \tag{14}$$

Where φ is a domain formula and ψ is either a restricted formula or a formula without quantifiers, and every variable appearing in a restricted formula must appear in a domain formula.

The set of variables in \overline{x} is included in the set of free variables in φ ; The same goes for ψ .

Examples

$$\forall x (P(x) \to Q(x)).$$

$$\forall x (P(x) \to \exists y (Q(y) \land R(x,y))).$$

Completion formulas

$$\forall x_{1},...,x_{n} (P(x_{1},...,x_{n},c_{1},...,c_{p}) \leftrightarrow ((x_{1} = a_{1_{1}} \wedge ... \wedge x_{n} = a_{1_{n}}) \vee ... \vee (x_{1} = a_{m_{1}} \wedge ... \wedge x_{n} = a_{m_{n}}))) .$$

$$(15)$$

Where P is a predicate symbol of arity n + p, and a_i are constants.

Definition

Given a domain formula φ and a set of completion formulas $\alpha_1,...,\alpha_n$ such that for each predicate symbol in φ there exists a completion formula α for this predicate symbol, we say that the set of completion formulas $\alpha_1,...,\alpha_n$ covers φ and will be noted $C(\varphi)$.

Domain of the variables of a domain formula

• if φ is of the form $P(x_1,...,x_n,c_1,...,c_p)$, and $C(\varphi)$ of the form: $\forall x_1,...,x_m(P(x_1,...,x_m,c_1,...,c_l) \leftrightarrow ((x_1=a_{1_1}\wedge...\wedge x_m=a_{1_m})\vee...\vee (x_1=a_{q_1}\wedge...\wedge x_m=a_{q_m})))$.

where
$$n \leq m$$
 and $l \leq p$. then $D(\mathcal{V}(\varphi), C(\varphi)) = \{ \langle a_{1_1}, ..., a_{1_n} \rangle, ..., \langle a_{q_1}, ..., a_{q_n} \rangle \}$. (16)

• if φ is of the form $\varphi_1 \vee \varphi_2$ then: $D(\mathcal{V}(\varphi_1 \vee \varphi_2), C(\varphi_1 \vee \varphi_2)) = D(\mathcal{V}(\varphi_1), C(\varphi_1)) \cup D(\mathcal{V}(\varphi_2), C(\varphi_2)) .$ (17)

Domain of the variables of a domain formula - Continued

• if φ is of the form $\varphi_1 \wedge \varphi_2$ then:

$$D(\mathcal{V}(\varphi_1 \wedge \varphi_2), C(\varphi_1 \wedge \varphi_2)) = D(\mathcal{V}(\varphi_1), C(\varphi_1)) \otimes_c D(\mathcal{V}(\varphi_2), C(\varphi_2)) .$$
(18)

Where \otimes_c is a join operator and c is a conjunction of equalities of the form i=j where the same variable symbol appears in $\varphi_1 \wedge \varphi_2$ in position i in φ_1 and in position j in φ_2 .

• if φ is of the form $\varphi_1 \wedge \neg \varphi_2$ then:

$$D(\mathcal{V}(\varphi_1 \wedge \neg \varphi_2), C(\varphi_1 \wedge \neg \varphi_2)) = D(\mathcal{V}(\varphi_1), C(\varphi_1)) \setminus D(\mathcal{V}(\varphi_1 \wedge \varphi_2), C(\varphi_1 \wedge \varphi_2)).$$
(19)

Where \setminus denotes the complement of the domain of each shared variable of $\varphi_1 \wedge \varphi_2$ with respect to φ_1 .

Example

Considering the three domains formulas P(x), Q(x), R(x,y) and their corresponding completion formulas as following:

$$\forall x (P(x) \rightarrow x = a \lor x = d) \text{ then } D(\mathcal{V}(P(x)), C(P(x))) = \{ \langle a \rangle, \langle d \rangle \}$$

$$\forall x (Q(x) \rightarrow x = b \lor x = c) \text{ then } D(\mathcal{V}(Q(x)), C(Q(x))) = \{ < b >, < c > \}$$

$$\forall x, y (R(x, y) \rightarrow (x = a \land y = b) \lor (x = a \land y = c) \lor (x = b \land y = e))$$

then $D(\mathcal{V}(R(x, y)), C(R(x, y))) = \{ \langle a, b \rangle, \langle a, c \rangle, \langle b, e \rangle \}$.

If we have:

$$\varphi_1 = P(x) \lor Q(x) \text{ then } D(\mathcal{V}(\varphi_1), C(\varphi_1)) = \{ \langle a \rangle, \langle b \rangle, \langle c \rangle, \langle d \rangle \}$$
 $\varphi_2 = R(x, y) \land P(x) \text{ then } D(\mathcal{V}(\varphi_2), C(\varphi_2)) = \{ \langle a, b \rangle, \langle a, c \rangle \}.$

$$\varphi_3 = R(x,y) \land \neg P(x) \text{ then } D(\mathcal{V}(\varphi_3), C(\varphi_3)) = \{ \langle b, e \rangle \}$$
.

Quantifier elimination procedure

• if $D(\mathcal{V}(\varphi_1), C(\varphi_1)) = \{\langle \overline{c_1} \rangle, ..., \langle \overline{c_n} \rangle\}$ with n > 0:

$$T(\forall \overline{x}(\varphi_1(\overline{x}) \to \varphi_2(\overline{x})), C(\varphi)) = T(\varphi_2(\overline{c_1}), C(\varphi_2(\overline{c_1}))) \land ... \land T(\varphi_2(\overline{c_n}), C(\varphi_2(\overline{c_n})))$$
.

$$T(\exists \overline{x}(\varphi_1(\overline{x}) \land \varphi_2(\overline{x})), C(\varphi)) = T(\varphi_2(\overline{c_1}), C(\varphi_2(\overline{c_1}))) \lor ... \lor T(\varphi_2(\overline{c_n}), C(\varphi_2(\overline{c_n}))).$$

• if $D(\mathcal{V}(\varphi_1), C(\varphi_1)) = \varnothing$:

$$T(\forall \overline{x} \ (\varphi_1(\overline{x}) \to \varphi_2(\overline{x})) \ , \ C(\varphi)) = True \ .$$

 $T(\exists \overline{x} \ (\varphi_1(\overline{x}) \land \varphi_2(\overline{x})) \ , \ C(\varphi)) = False \ .$

Translation Procedure - Observation

Observation 1

Let F be a restricted formula of the form $F: \exists x (\varphi(x) \land \psi(x))$ where φ is a domain formula, and its corresponding completion formula

$$C(\varphi): \forall x (\varphi(x) \leftrightarrow x = c_1 \lor x = c_2 \lor ... \lor x = c_n)$$
.

Then we have:

$$F': \exists x((x=c_1 \vee x=c_2 \vee ... \vee x=c_n) \wedge \psi(x)).$$

Using the equality substitution axiom scheme we can prove that $F \leftrightarrow F''$ where:

$$F'': \psi(c_1) \vee ... \vee \psi(c_n)$$
.

Translation Procedure - Observation

Observation 2

Let F be a restricted formula of the form $F: \forall x (\varphi(x) \to \psi(x))$ where φ is a domain formula, and its corresponding completion formula

$$C(\varphi): \forall x (\varphi(x) \leftrightarrow x = c_1 \lor x = c_2 \lor ... \lor x = c_n)$$
.

Then we have:

$$F': \forall x ((x = c_1 \lor x = c_2 \lor ... \lor x = c_n) \to \psi(x))$$
.

Р

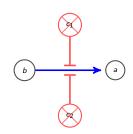
Using the equality substitution axiom scheme we can prove that $F \leftrightarrow F''$ where:

$$F'': \psi(c_1) \wedge ... \wedge \psi(x_n)$$
.

Example

$$\forall x (\exists y (A(y) \land CA(y,x) \land \forall z (CICA(z,y,x) \rightarrow \neg A(z))) \rightarrow A(x)) \quad (20)$$

- $\forall y (CA(y, a) \leftrightarrow y = b)$
- $\forall z (CICA(z, b, a) \leftrightarrow z = c_1 \lor z = c_2)$



$$A(b) \wedge \neg A(c_1) \wedge \neg A(c_2) \rightarrow A(a)$$

Example - Continued

$$\forall x (\exists y (A(y) \land CA(y,x) \land \forall z (CICA(z,y,x) \rightarrow \neg A(z))) \rightarrow A(x))$$

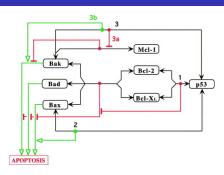
Our restricted formula is of the following form:
 ∃y(CA(y,x) ∧ φ(y))
 We can then apply the translation procedure using our first completion formula, thus eliminating y:

$$A(b) \land \forall z (CICA(z, b, a) \rightarrow \neg A(z)) \rightarrow A(a)$$
 (21)

② We can also apply a second translation procedure to $\forall z(\mathit{CICA}(z,b,a) \to \neg A(z))$ using the second completion formula, thus eliminating z. Which finally gives us:

$$A(b) \wedge \neg A(c_1) \wedge \neg A(c_2) \rightarrow A(a)$$
 (22)

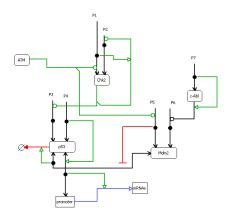
Example - Mitochondrial apoptosis induced by p53 independently of transcription



- A(p53) ∧ A(bak) → A(bak_p53).
- A(bak_p53) → I(bak_mcl).
- $A(bak_p53) \land \neg A(b_complex) \land \neg A(bak_mcl) \rightarrow A(apoptosis).$

- $A(p53_bb_complex) \rightarrow I(b_complex)$
- $A(p53) \land A(bax) \land \neg A(b_complex) \rightarrow A(apoptosis)$
- $\qquad \qquad A(\textit{bad}) \land \neg A(\textit{b_complex}) \rightarrow A(\textit{apoptosis})$

Example - DNA Double-Strand Break



- $A(atm) \wedge A(chk2) \rightarrow A(chk2_p1)$
- $A(chk2) \wedge A(chk2_p1) \rightarrow A(chk2_p2)$
- $A(c_abl_p7) \wedge A(mdm2) \rightarrow A(mdm2_p6)$
- $A(chk2_p2) \land A(p53) \rightarrow A(p53_p3)$

- $A(p53_mdm2) \rightarrow A(p53_degradation)$
 - $A(p53_p4) \land A(promoter) \rightarrow A(p53_promoter)$
- $A(promoter) \land A(p53_promoter) \rightarrow A(mrnas)$

Example

Questions

Abduction, Deduction

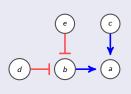
Abduction for: A(apoptosis)

- A(p53) ∧ A(bcl) ∧ A(bak): is a plausible answer, because p53 can bind to Bcl giving the p53_bb_complex, which can in return inhibit the b_complex that is responsible of inhibiting the capacity of Bak to activate the cell's apoptosis.
- Another interpretation of the previous answer is that p53 can also bind to Bak giving the bak_p53 protein, which can in return inhibit the bak_mcl responsible of inhibiting the capacity of Bak to activate the cell's apoptosis. bak_p53 can also stimulate Bak to reach apoptosis. Without forgetting that p53_bb_complex inhibit b_complex.
- $A(p53) \wedge A(bcl) \wedge A(bax)$: can also be a plausible answer.
- ...

Another type of questions

Test basis

- For A(a) we should have A(b) or A(c).
- Consistency conditions for A(b): $\neg A(e)$ and $\neg A(d)$.
- If we know that either A(d) or A(e), then we also know that only c will activate a.



Finally

Possible extensions

- Quantities, concentrations...
- Time, order...
- Notion of Aboutness

Thank you.