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Conditional independence

u-separation

Bayesian networks: formal definition

Conceptos básicosBasics of Bayesian networks
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Advantages of BNs
Explicit representation of the uncertain knowledge

 Graphical, intuitive, closer to a world repres.

Deal with uncertainty for reasoning and decision-making

Founded on probability theory, provide a clear semantics and 
a sound theoretical foundation

Manage many variables

Both data and experts can be used to construct the model

Current and huge development

Support the expert; do not try to replace him

Reasoning under uncertainty

C.Bielza-UPM-
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Modularity

The joint probability distribution (JPD) (global 
model) is specified via marginal and conditional
distributions (local models), taking into account 
conditional independence relationships among 
variables

C.Bielza-UPM-

Conditional independence

2n-1 parameters
(complete 

dependence)

n parameters
(mutual 
independence)

some conditional
independencies

(chain rule)
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Independence and conditional independence

Independence

Conditional independence of X and Y given Z

3 disjoint sets of variables

Notation:

Intuitively, whenever Z=z, the information Y=y does not
influence on the probability of x

for all possible values x,y,z

sets of vars(marginal)

C.Bielza-UPM-

Conditional independence
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Example

Send a message M1 through a transmitter. It is 
received as M2 and it is then sent through other 
transmitter. It is received finally as M3.
Transmitters have noise that modifies messages

M1 M2 M3

M1 and M3 are dependent without any knowledge

M1 and M3 are independent given M2

C.Bielza-UPM-

Conditional independence
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Factorization via c.i.

Further factorizing the JPD

Joint distribution factorized

The number of parameters might be substantially reduced

C.Bielza-UPM-
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Informal definition: two components

Qualitative part: a directed acyclic graph (DAG)
Nodes = variables

Arcs = direct dependence relations 
(otherwise it indicates absence of 
direct dependence; there may be 
indirect dependencies and 
independencies)

Quantitative part: a set of conditional probabilities 
that determine a unique JPD

Not necessarily causality

Bayesian Networks

YES

C.Bielza-UPM-
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Target node

Parents

Ancestors

Children

Descendants

Rest

Family

C.Bielza-UPM-

Bayesian Networks: nodes
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Independencies in a BN

A BN represents a set of independencies

Distinguish:

Basic independencies: we should take care of 
verifying them when constructing the net

Derived independencies: from the previous
independencies, by using the properties of the
independence relations

Check them by means of the u-separation (or d-separation) 
criterion

C.Bielza-UPM-

BNs: arcs (types of independence)
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Xi is c.i. of its 

non-descendants, 

given its parents

Pa(Xi)

Basic independence: 
Markov condition

Basic independencies

C.Bielza-UPM-



Examples
Fever is c.i. of 
Jaundice given  
Malaria and Flu

C.Bielza-UPM-

Basic independencies

M1

M2

M3
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Quantitative part

Use the chain rule and the Markov condition

Markov condition and JPD factorization

Let X1,…,Xn be an ancestral ordering (parents appear before
their children in the sequence). It always exists (DAG)

Using that ordering in the chain rule, in {X1 ,…,Xi-1} there
are non-descendants of Xi, and we have

C.Bielza-UPM-
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Therefore, we can recover the JPD by using the 
following factorization:

Only store local distributions at each node
Fewer parameters to assign and more naturally
Inference easier (reasoning)

MODEL CONSTRUCTION EASIER:

Quantitative part

C.Bielza-UPM-

Markov condition and JPD factorization
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With all binary variables:

A

EB

W

N

32=25-1 probabilities for the JPD

10 with the factorization in the BN: 

11

4

2

2

Example of savings

C.Bielza-UPM-
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237 probabilities for the JPD vs. 509 in BN

BN Alarm for monitoring ICU patients

Example of savings

C.Bielza-UPM-
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u-separation

Obtain the minimum graph containing X,Y,Z
and their ancestors (ancestral graph)

The subgraph obtained is moralized (add a 
link between parents with children in 
common) and remove direction of arcs

Z u-separates X and Y whenever Z is in all 
paths between X and Y

Independencies derived from u-separation

C.Bielza-UPM-
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u-separation

Y

X

R

W Z

S

T

W

S

Y Z

Blue u-separated by red?

W ⊥ S | {Y,Z} ?

W Y

T

W ⊥ T | Y ?

C.Bielza-UPM-

Independencies derived from u-separation
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Theorem [Verma and Pearl’90, Neapolitan’90]

Let P be a prob. distribution of the variables in V 
and G=(V,E) a DAG. 
(G,P) holds the Markov condition iff

disjointu-separation defined by G
c.i. defined by P

Graph G represents all dependencies of P

Some independencies of P may be not identified by
d-separation in G

Joining the two parts

C.Bielza-UPM-
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Formal definition

Let P be a JPD over V={X1,…,Xn}. 

A BN is a tuple (G,P), where G=(V,E) is a DAG such that:

Each node of G represents a variable of V

The Markov condition is held

Each node has associated a local prob. 

distrib. such that

u-separated variables in the graph are independent (G is 

a minimal I-map of P)

(taking an ancestral 
ordering)

Definition of BN

C.Bielza-UPM-
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Expert / data / both

Manual with the aid of an expert in the domain

A combination (experts → structure; database →
probabilities)

Causal
mechanisms

Causal graph Bayesian net
modelisation probabilities

Learning from a database

Database Bayesian net
algorithm

Build it in the causal direction: BNs simpler and efficient

Building a BN

C.Bielza-UPM-
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Types of queries

Brute-force computation

Probabilistic logic sampling

Variable elimination algorithm

Message passing algorithm

Conceptos básicosInference in Bayesian networks

Exact inference:

Approximate inference:
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Physician wants to diagnose her patients w.r.t. 3 diseases
Tuberculosis
Lung cancer

Bronchitis

Causes or risk factors:

Dyspnea (shortness-of-breath) may be due to Tuberculosis, Lung cancer, 
Bronchitis, none of them, or more than one of them

Recent Visit to Asia increases the chances of Tuberculosis
Smoking is a risk factor for both Lung cancer and Bronchitis

Chest X-Ray. Neither symptom discriminates between Lung cancer
and Tuberculosis

Symptoms:

C.Bielza-UPM-

Example: Asia BN [Lauritzen & Spiegelhalter’88]
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Example: Asia BN [Lauritzen & Spiegelhalter’88]
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P(X)?



P(X|Smoker=yes)?



P(X|Asia=yes,Smoker=yes)?



P(X|Asia=yes,Smoker=yes,Dyspnea=yes)?
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Queries: posterior probabilities

Given some evidence e (observations),

Posterior probability of a target variable(s) X : 

Other names: probability propagation, belief updating or 
revision…

Vector

Types of queries
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P(D|Bronquitis=yes)?

? Predictive reasoning or
deductive (causal inference): 
predict effects
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P(T|Dyspnea=yes)? Diagnostic reasoning (diagnostic inference): 
diagnose the causes

?
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?

?

?

?

?

?

?

Max a posteriori (MAP)
(abductive inference): 
event that best explains the 
evidence

Total (or MPE)
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? ? ?

Max a posteriori (MAP)
(abductive inference): 
event that best explains the 
evidence

Partial
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Classification

Types of queries

Use MPE to:
Find most likely label, given the evidence

maxc P (c | x1,…,xn )

Decision-making

Optimal decisions (of maximum expected utility), 
with influence diagrams



Examples: medicine (jaundice)

Gómez, M., Bielza, C., Fernández del Pozo, J.A., Ríos-Insua, S. (2007). 
A graphical decision-theoretic model for neonatal jaundice. Medical Decision Making, 27(3), 250-265



Examples: medicine (gastric lymphoma)

Bielza, C., Fernández del Pozo, J.A., Lucas, P. (2008). 
Explaining clinical decisions by extracting regularity patterns. Decision Support Systems, 44, 397-408



Examples: reservoir management

Cahora Bassa: generated energy is sold to 
South Africa

Lake Kariba: Nearly 70% of the 
electricity is consumed

Objectives: energy + water supply

Ríos Insua, D., Salewicz, K.A., Müller, P., Bielza, C. (1997) Bayesian methods in reservoir
operations: the Zambezi river case. In The Practice of Bayesian Analysis, 107–130



Examples: neuroscience

DeFelipe, J., Lopez-Cruz, P.L., Benavides-Piccione, R., Bielza, C., Larrañaga, P. et al. (2013). New 
insights into the classification and nomenclature of cortical GABAergic interneurons. Nature

Reviews Neuroscience, 14(3), 202-216



Examples: neuroscience



Examples: neuroscience

Lopez-Cruz, P.L., Larrañaga, P., J. DeFelipe, Bielza, C. (2014). Bayesian network modeling of the
consensus between experts: An application to neuron classification. International Journal of 

Approximate Reasoning, 55(1), 3-22



Examples: industry (high-speed machining)

How to online guarantee a good surface roughness

• Cutting parameters: spindle speed, cutting force, feed rate,  
cutting depth…

• Tool variables: number of teeth (flutes), tool diameter…

Correa, M., Bielza, C., Ramírez, M. de J., Alique, J.R. (2008) A Bayesian network model for surface roughness 
prediction in the machining process. International Journal of Systems Science, 39(12), 1181-1192
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Brute-force computation of P(X|e)

Conceptually simple but computationally complex

For a BN with n variables:

But this amounts to computing the JPD, often very 
inefficient and even intractable computationally

CHALLENGE: Without computing the JDP, exploit the
factorization encoded by the BN and the distributive
law (local computations)

Exact inference [Pearl’88; Lauritzen & Spiegelhalter’88]

Brute-force 
approach
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Improving brute-force
Use the JPD factorization and the distributive law

Table with 32 inputs (JPD) 
(if binary variables)

Exact inference

?



45

Improving brute-force
Arrange computations effectively, moving some additions

 over X5 and X3:

 over X4:
Biggest table with 8
(like the BN)

Exact inference
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Variable elimination (VE) algorithm

Wanted:

A list with all functions of the problem

Select an elimination order  of all variables (except i)

For each Xk from , if F is the set of functions that 
involve Xk:

Delete F from the list

Add f’ to the list

Output: combination (multiplication) of all functions in 
the current list

Eliminate Xk= combine all the 
functions that contain this 
variable and marginalize out Xk

Compute

ONE variable

Exact inference
R

e
pe

at
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e
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Brute-force approach

Compute P(D) by brute-force:

Example with Asia network; P(D)?


x b e l t s a

dxbeltsaPdP ),,,,,,,()(

Complexity is exponential in the size of the graph 
(n×number of states for each variable)
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Example with Asia network: VE

not necessarily a probability term
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Example with Asia network: VE

4

Size = 8
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Basic operations for a node

Ask info(i,j): Target node i asks info to node j. Does it for all 
neighbors j. They do the same until there are no nodes to ask

Message passing algorithm

Send-message(i,j): Each node sends a message          to the node 
that asked him the info… until reaching the target node

A message is defined over the intersection of domains, Fi and Fj, 
of fi and fj:

And finally, we calculate locally at each node i:
Target combines all 
received info 
with his info 
and marginalize over 
the target variable
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Procedure for P(X2)

Message passing algorithm

C
ol

le
ct

E
vi

d
en

ceAsk
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VE as a message passing algorithm

Direct correspondence:

Exact inference

?

VE

Mess.
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Computing prob. P(Xi|e) of all (unobserved) variables i at a time

Rerun this for each node: many messages repeated!

Message passing algorithm

Or, we can use 2 rounds of messages as follows:

Select a node as a root (or pivot)

Ask or collect evidence: leaves root (messages in downward
direction). As VE.

Distribute evidence: root leaves (upward direction)

Calculate marginal distributions at each node by local 
computation, i.e. using its incoming messages

Enables to compute the posteriors of all variables in 
twice the time it takes to compute that of one single 
variable
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Message passing algorithm

X

1 1

1
2

22

34

5
6 7

77
8 8

8

CollectEvidence

Root node

Exact inference

First sweep:

DistributeEvidence
Second sweep:



55

Complexity of exact inference in BNs

In BN without loops (cycles in the underlying undirected 
graph) –polytrees-, inference is easy (polynomial)

In general BNs, exact inference is NP-complete [Cooper 1990]

Polytree=DAG without loops

There is only one path

between any pair of nodes

=singly connected graph

Exact inference
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Alternative: clustering methods [Lauritzen & Spiegelhalter’88]

Transform the BN into an auxiliary representation (clique 
tree or junction tree) by merging nodes and removing loops

Exact inference

M

S B

C H

Metastatic cancer (M) is a possible cause of brain tumors (B) and an explanation for increased 
total serum calcium (S). In turn, either of these could explain a patient falling into a coma (C). 
Severe headache (H) is also associated with brain tumors.

Create a new node Z, 
that combines S and B

M

Z=S,B

C H

States of Z: {tt,ft,tf,ff}

P(Z|M)=P(S|M)P(B|M) 
since they are c.i. given M

P(H|Z)=P(H|B) 
since H c.i. of S given B

Multiply-connected BNs
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Stochastic simulation

Uses the network to generate a large number of cases 
(full instantiations) from the network distribution

Inferencia aproximada
Approximate inference

P(Xi|e) is estimated using these cases by counting 
observed frequencies in the samples. By the Law of 
Large Numbers, the estimate converges to the exact 
probability as more cases are generated

Approximate inference in BNs within an arbitrary 
tolerance or accuracy is NP-hard

In practice, if e is not too unlikely, convergence is quickly
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Probabilistic logic sampling [Henrion’88]

2

1

6

4

3

5

When all the 
nodes have 
been visited, 
we have a case, 
an instantiation
of all the nodes 
in the BN

Given an ancestral ordering of the nodes (parents before 
children), generate from X once we have generated from its 
parents (i.e. from the root nodes down to the leaves)

Repeat and use the 
observed frequencies
to estimate P(Xi|e)Use conditional prob. 

given the known values of the parents

Approximate inference
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Probabilistic logic sampling

Suppose we obtain the following samples:

(0,1,1,1,1,1), (0,1,0,1,1,1), (1,0,0,1,1,1), (0,0,1,1,1,0), (1,1,1,1,0,0)

Then:

With evidence, e.g. X2=1, we discard the third and fourth samples 
and we would repeat until having a sample of size 5 as desired

(0,1,1,1,1,1), (0,1,0,1,1,1), (1,1,0,0,1,1), (1,1,1,1,1,0), (1,1,1,1,0,0)

Approximate inference



Examples: neuroscience

Models and simulation of 3D dendritic tree morphology

Lopez-Cruz, P.L., Bielza, C., Larrañaga, P., Benavides-Piccione, R. & DeFelipe, J. (2011). 
Models and simulation of 3D neuronal dendritic trees using Bayesian networks. Neuroinformatics, 9(4), 347-369



Models and simulation of 3D dendritic tree morphology

Examples: neuroscience
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On the web

Resources

BN repositories:
http://www.cs.huji.ac.il/site/labs/compbio/Repository/
http://genie.sis.pitt.edu/index.php/network-repository
http://www.bnlearn.com/bnrepository/

Much information:
http://www.cs.ualberta.ca/~greiner/bn.html#applic

Coursera (D. Koller @ Stanford): “Probabilistic graphical
models”: https://class.coursera.org/course/pgm

C.Bielza-UPM-
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http://www.cs.ualberta.ca/~greiner/bn.html
https://class.coursera.org/course/pgm
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Texts

D. Koller, N. Friedman (2009) Probabilistic Graphical Models, The MIT Press

A. Darwiche (2009) Modeling and Reasoning with BNs, Cambridge U.P.

C.Bielza-UPM-



Books with applications

Some in Neapolitan (2004)

Many more in Mittal and Kassim (2007) 

…and in Pourret et al. (2008)

In Bioinformatics field, Neapolitan (2009)



66

Important groups/conferences

European Worshop PGM (2002-)

Uncertainty in AI (1985-)

C.Bielza-UPM-
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Software

www.hugin.com/

http://www.cs.ubc.ca/~murphyk/Bayes/bnsoft.html
http://www.cs.iit.edu/~mbilgic/classes/fall10/cs595/tools.html

http://www.cs.ubc.ca/~murphyk/Bayes/bnsoft.html
http://www.cs.iit.edu/~mbilgic/classes/fall10/cs595/tools.html
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Software

www.bayesia.com

See 
“Applications 
overview”
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Software

GeNIe at www.bayesfusion.com
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Software

code.google.com/p/bnt/

https://code.google.com/p/bnt/
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www.openmarkov.org/ (UNED)

Software

http://www.openmarkov.org/
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reasoning.cs.ucla.edu/samiam/

Software
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www.r-project.org/

Software

bnlearn, deal, pcalg, 

catnet, mugnet, bnclassify
learning

gRbase, gRain inference
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Outline

1 Learning associations from data
Learning parameters
Learning structures

2 Bayesian classifiers
From naive Bayes to multinets
Applications

3 Conclusions
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Associations Classifiers Conclusions

From data to Bayesian networks

Learning structure and parameters

C.Bielza Redes Bayesianas
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From naive Bayes to multinets
Applications
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Associations Classifiers Conclusions Parameters Structures

Maximum likelihood estimation of parameters

P(Xi = xk
i | paj

i ) = θijk , i = 1, ..., n; j = 1, ..., qi ; k = 1, ..., ri

Nij number of cases in D where configuration paj
i has been observed

Nijk number of cases in D where simultaneously Xi = xk
i and Pai = paj

i have
been observed (Nij =

∑ri
k=1 Nijk )

likelihood L(D : θ) =
n∏

i=1

qi∏
j=1

ri∏
k=1

θ
Nijk
ijk

For each variable Xi and configuration paj
i of Pai

θ̂ML
ijk =

Nijk

Nij

Laplace estimator for sparse data (Nij = 0, or unlikely paj
i or Xi = xk

i )

θ̂
Lap
ijk =

Nijk + 1
Nij + ri

C.Bielza Redes Bayesianas



Associations Classifiers Conclusions Parameters Structures

Maximum likelihood estimation of parameters

Parameters θijk : example
Four variables: X1, X3 and X4 with two possible values, and X2 with three possible values

Local probabilities
θ1 = (θ1−1, θ1−2) P(x1

1 ), P(x2
1 )

θ2 = (θ2−1, θ2−2, θ2−3) P(x1
2 ), P(x2

2 ), P(x3
2 )

θ3 = (θ311, θ321, θ331, P(x1
3 |x

1
1 , x1

2 ), P(x1
3 |x

1
1 , x2

2 ), P(x1
3 |x

1
1 , x3

2 ),

θ341, θ351, θ361, P(x1
3 |x

2
1 , x1

2 ), P(x1
3 |x

2
1 , x2

2 ), P(x1
3 |x

2
1 , x3

2 ),

θ312, θ322, θ332, P(x2
3 |x

1
1 , x1

2 ), P(x2
3 |x

1
1 , x2

2 ), P(x2
3 |x

1
1 , x3

2 ),

θ342, θ352, θ362) P(x2
3 |x

2
1 , x1

2 ), P(x2
3 |x

2
1 , x2

2 ), P(x1
3 |x

2
1 , x3

2 ),

θ4 = (θ411, θ421, θ412, θ422) P(x1
4 |x

1
3 ), P(x1

4 |x
2
3 ), P(x2

4 |x
1
3 ), P(x2

4 |x
2
3 )

Factorisation of the JPD:
P(x1, x2, x3, x4) = P(x1)P(x2)P(x3|x1, x2)P(x4|x3)

variable possible values parent variables possible values of the parents
Xi ri Pai qi
X1 2 ∅ 0
X2 3 ∅ 0
X3 2 {X1, X2} 6
X4 2 {X3} 2

C.Bielza Redes Bayesianas



Associations Classifiers Conclusions Parameters Structures

Bayesian estimation

Parameters θ = (θ1, ...,θn) are modeled with a random variable

f (θ|G): the prior about possible values of θ

Posterior: f (θ|D,G) ∝ p(D|θ,G)f (θ|G)
Summarize the posterior by using mean or mode (MAP):

θ̂
Ba

=

∫
θf (θ|D,G)dθ, θ̂

Ba
= arg máx

θ
f (θ|D,G)

For parameters θij = (θij1, ..., θijri ), if (θij |G) ∼ Dir(αij1, ..., αijri ), then
(θij |D,G) ∼ Dir(αij1 + Nij1, ..., αijRi

+ Nijri ) and hence the posterior mean is

θ̂Ba
ijk =

Nijk + αijk

Nij + αij

where αij =
∑ri

k′=1 αijk′ , called equivalent sample size

Laplace estimates: a particular case of Bayesian estimation, with αijk = 1, ∀k
(flat Dirichlet, equivalent to a uniform distribution)

C.Bielza Redes Bayesianas



Associations Classifiers Conclusions Parameters Structures

Learning structures

Two types of methods
Based on detecting conditional independencies
(constrained-based methods)

First: study dependence/independence relationships among the variables
by means of statistical tests
Second: try to find the structure (or structures) that represents the most (or
all) of these relationships

Based on score + search
They try to find the structure that best “fit” the data
They need:

A score (metric or evaluation function) in order to measure the
goodness of each candidate structure
A search method (heuristic) to explore in an intelligent manner the
space of possible solutions
Several types of spaces can be considered

C.Bielza Redes Bayesianas



Associations Classifiers Conclusions Parameters Structures

Testing conditional independencies

PC algorithm (Spirtes et al. 1993)
0) Start from the complete undirected graph
1) Produce the skeleton via edge elimination by hypothesis

testing. If for some S, Ip(Xi ,Xj |S) holds, edge Xi − Xj can be removed

(c.i.↔ u-separ., is assumed)

2) Identify v-structures
3) Try to orient the edges to have the completed partially DAG

(CPDAG or essential graph, the Markov equivalence class of DAGs)

Markov equivalent: Same skeleton, same v-structures (inmoralities)

→

C.Bielza Redes Bayesianas



Associations Classifiers Conclusions Parameters Structures

Testing conditional independencies

PC algorithm (Spirtes et al. 1993). Example with t = 2

C.Bielza Redes Bayesianas



Associations Classifiers Conclusions Parameters Structures

Score+search approaches

C.Bielza Redes Bayesianas



Associations Classifiers Conclusions Parameters Structures

Score+search approaches

Score metrics. Log-likelihood
Log-likelihood of the data:

log P(D : G,θ) =
n∑

i=1

qi∑
j=1

ri∑
k=1

log(θijk )Nijk

Estimated log-likelihood:

log P(D : G, θ̂ML) =
n∑

i=1

qi∑
j=1

ri∑
k=1

Nijk log
Nijk

Nij

C.Bielza Redes Bayesianas



Associations Classifiers Conclusions Parameters Structures

Score+search approaches

Score metrics. Log-likelihood

Likelihood of the data increases monotonically with the
complexity of the model (structural overfitting)

C.Bielza Redes Bayesianas



Associations Classifiers Conclusions Parameters Structures

Score+search approaches

Score metrics. Penalized log-likelihood
Avoid overfitting penalizing the complexity of the BN in the
log-likelihood :

n∑
i=1

qi∑
j=1

ri∑
k=1

Nijk log
Nijk

Nij
−dim(G)pen(N)

dim(G) =
∑n

i=1 qi (ri − 1), model dimension
pen(N)≥ 0, penalization function

pen(N) = 1: Akaike’s information criterion (AIC)
pen(N) = 1

2 log N: Bayesian information criterion (BIC). Its
calculation is equivalent to the minimum description length
(MDL) criterion

C.Bielza Redes Bayesianas



Associations Classifiers Conclusions Parameters Structures

Score+search approaches

Score metrics. Bayesian approach
Try to obtain the structure with maximum a posteriori
probability given the data, that is, arg máxG P(G|D)

Using Bayes’ formula:

P(G|D) ∝ P(D|G)P(G)

P(G): the prior distribution over structures
If P(G) is uniform (máx P(G|D) ≡ máx P(D|G)), i.e., the
structure with maximum marginal likelihood
P(D|G): the marginal likelihood of the data
P(D|G) =

∫
P(D|G,θ)f (θ|G)dθ

P(D|G,θ): likelihood of the data given the BN (structure + parameters)
f (θ|G): prior distribution over the parameters
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Score+search approaches

Score metrics. Bayesian approach: BD and K2 scores
If f (θ|G) follows a Dirichlet distribution, we have a closed
formula for P(D|G)

P(D|G) =
n∏

i=1

qi∏
j=1

Γ(αij)

Γ(αij + Nij)

ri∏
k=1

Γ(αijk + Nijk )

Γ(αijk )

Bayesian Dirichlet (BD) score
If αijk = 1, ∀i , j , k (flat Dirichlet or uniform distribution):

P(D|G) =
n∏

i=1

qi∏
j=1

(ri − 1)!

(Nij + ri − 1)!

ri∏
k=1

Nijk !

K2 metric

C.Bielza Redes Bayesianas



Associations Classifiers Conclusions Parameters Structures

Score+search approaches

K2 algorithm
An ordering between the nodes is assumed

An upper bound is set on the number of parents for any node

For every node, Xi , K2 searches for the set of parent nodes that maximizes:

g(Xi ,Pai ) =

qi∏
j=1

(ri − 1)!
(Nij + ri − 1)!

ri∏
k=1

Nijk !

K2 assumes initially that a node does not have parents

At each step K2 incrementally adds the parent whose addition provides the best
value for g(Xi ,Pai )

K2 stops when adding a single parent to any node cannot increase g(Xi ,Pai )

K2 is a greedy algorithm
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Score+search approaches

Different spaces for the search
Space of DAGs

d(n) =
n∑

i=1

(−1)i+1(n
i )2i(n−i)d(n − i); d(0) = 1; d(1) = 1

Space of equivalence classes
# DAGs ≈ 3.7 # CPDAGs (moderate gain)
Scores: score equivalent

Ordering between the variables: cardinality of the search
space n!
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Score+search approaches

Search algorithms. Local search. Algorithm B
Local operators: add, remove and reverse an arc

Efficient search due to the decomposability of the most usual metrics (AIC, BIC,
BD, K2,...)

Search algorithms. Genetic algorithms
Each individual represents a DAG structure (binary representation)
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Supervised classification

Supervised: From labelled data to classification models
Predictor variables (attributes) and one labelled (class) variable:

X1 . . . Xn C
(x (1), c(1)) x (1)

1 . . . x (1)
n c(1)

(x (2), c(2)) x (2)
1 . . . x (2)

n c(2)

. . . . . . . . .

(x (N), c(N)) x (N)
1 . . . x (N)

n c(N)

x (N+1) x (N+1)
1 . . . x (N+1)

n ???
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Different architectures

Naive Bayes Selective naive Bayes TAN

k -dependence Unrestricted Bayesian multinet
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Different architectures

Bielza, Larrañaga (2014). Discrete Bayesian network classifiers: A survey. ACM
Computing Surveys 47, 1, Article 5
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Outcome prediction after epilepsy surgery

Armañanzas, Alonso-Nanclares, DeFelipe-Oroquieta, Kastanauskaite, de Sola,
DeFelipe, Bielza, Larrañaga (2013). Machine learning approach for the outcome
prediction of temporal lobe epilepsy surgery. PLoS ONE, 8(4), e62819 (2009)
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Dementia development in Parkinson’s disease

Morales, Vives-Gilabert, Gómez-Ansón, Bengoetxea, Larrañaga, Bielza,
Pagonabarraga, Kulisevsky, Corcuera-Solano, Delfino (2012). Predicting dementia
development in Parkinson’s disease using Bayesian network classifiers. Psychiatry
Research: NeuroImaging, 213, 92-98
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Alzheimer’s disease and DNA microarrays

Armañanzas, Bielza, Larrañaga (2012). Ensemble transcript interaction networks: A
case study on Alzheimer’s disease. Computer Methods and Programs in Biomedicine,
108, 1, 442 - 450
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Multi-dimensional classification with Bayesian networks

X1 . . . Xm C1 . . . Cd

(x(1), c(1)) x (1)
1 . . . x (1)

m c(1)
1 . . . c(1)

d
(x(2), c(2)) x (2)

1 . . . x (2)
m c(2)

1 . . . c(2)
d

. . . . . . . . .

(x(N), c(N)) x (N)
1 . . . x (N)

m c(N)
1 . . . c(N)

d
x(N+1) x (N+1)

1 . . . x (N+1)
m ??? . . . ???

Bielza, Li, Larrañaga (2011). Multi-dimensional classification with Bayesian networks.
International Journal of Approximate Reasoning, 52, 705 - 727
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Multi-dimensional classification for genotypic predictors of HIV type 1 drug resistance

Borchani, Bielza, Toro, Larrañaga (2013). Learning multi-dimensional Bayesian network
classifiers using Markov blankets: A case study in the prediction of HIV-1 reverse
transcriptase and protease inhibitors. Artificial Intelligence in Medicine, 57(3), 219-229
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Multi-dimensional classification for EQ-5D health states from PDQ-39 in Parkinson’s

disease

PDQ-39

PDQ-39 captures patients perception of his illness covering 8 dimensions:

1 Mobility

2 Activities of daily
living

3 Emotional well-being

4 Stigma

5 Social support

6 Cognitions

7 Communication

8 Bodily discomfort
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Multi-dimensional classification for EQ-5D health states from PDQ-39 in Parkinson’s

disease

EQ-5D

EQ-5D is a generic measure of health for clinical and economic appraisal
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Multi-dimensional classification for EQ-5D health states from PDQ-39 in Parkinson’s

disease

Mapping PDQ-39 to EQ-5D

PDQ1 PDQ2 ... ... PDQ39 EQ1 EQ2 EQ3 EQ4 EQ5
3 1 ... ... 3 1 3 3 2 1
2 3 ... ... 2 1 1 2 3 2
5 2 ... ... 4 1 3 3 1 2
... ... ... ... ... ... ... ... ... ...
4 4 ... ... 3 3 1 2 3 2
4 4 ... ... 3 3 1 2 3 2
5 5 ... ... 4 2 3 2 3 3

h : (PDQ1, ...,PDQ39)→ (EQ1, ...,EQ5)

Borchani, Bielza, Martı́nez-Martı́n, Larrañaga (2012). Markov blanket-based approach
for learning multi-dimensional Bayesian network classifiers: An application to predict
the European quality of life-5Dimensions (EQ-5D) from the 39-item Parkinson’s
disease questionnaire (PDQ- 39), Journal of Biomedical Informatics, 45, 1175-1184
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Conclusions

Bayesian networks and Bayesian classifiers
Based on probability theory
Theoretical properties
Knowledge discovery
Intuitive models
Reasoning as inference propagation
Simulation from the model
Competitive results in accuracy
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