Escuela de Verano de Inteligencia Artificial ASOCIACIÓN ESPAÑOLA PARA LA INTELIGENCIA ARTIFICIAL (AEPIA)

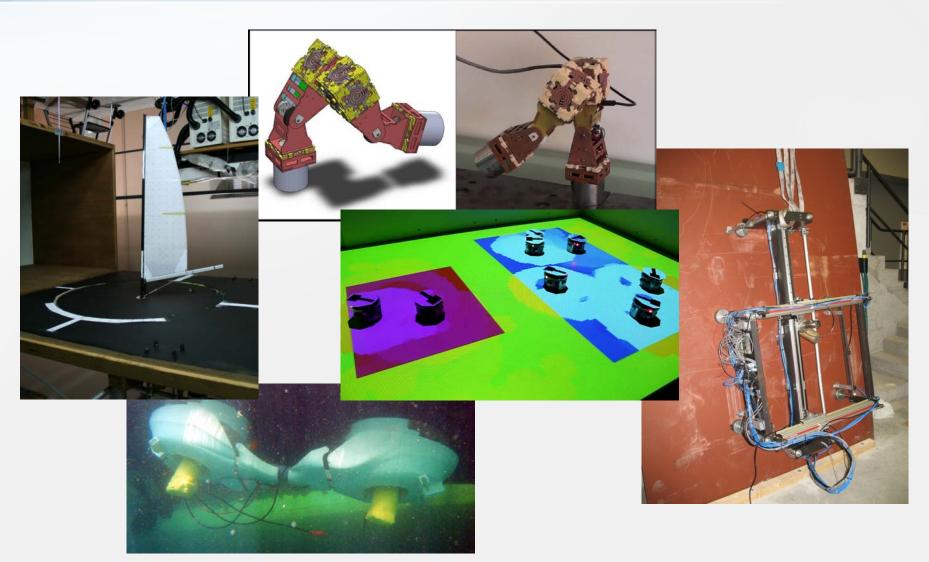
# Robótica Cognitiva

#### Francisco Bellas

Grupo Integrado de Ingeniería Departamento de Computación






## Presentación



- Francisco Bellas
  - Profesor Titular de Universidad
  - Departamento de Computación
  - francisco.bellas@udc.es
  - Extensión: 3886
  - Despacho nº2 Edificio de Talleres Tecnológicos, Campus de Esteiro, Ferrol
- Grupo Integrado de Ingeniería (www.gii.udc.es)
  - Grupo de investigación interdisciplinar
    - Organización Industrial
    - Sistemas Autónomos
    - Ingeniería Naval



# Grupo Integrado de Ingeniería







# Robótica Cognitiva

- Conceptos básicos en robótica autónoma
- Cognición
- Cognitive Developmental Robotics
- Un ejemplo de arquitectura cognitiva
  - Multilevel Darwinist Brain
- Conclusiones





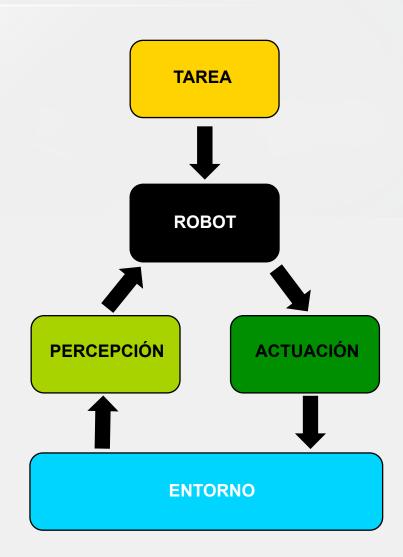


## Definición de robot autónomo:

"es una máquina capaz de extraer información de su entorno y utilizar conocimiento sobre su mundo para moverse de forma segura, justificada e intencionada"

**Arkin**, Behavior-Based Robotics, 1998












- Tarea:
  - Predefinida por el diseñador
  - Objetivo (motivación)
- Robot:
  - Cuerpo/sensores/actuadores
  - Control
- Percepción:
  - Información sensorial
- Actuación:
  - Directa o indirecta
- Entorno:
  - Mundo real








- El controlador de un robot es el sistema encargado de decidir qué acciones tomar en función de los estados externo/interno y del modelo interno (si existe)
  - Toma de decisiones autónoma
- La obtención de controladores ha sido la parte más estudiada en robótica autónoma:
  - Inspiración biológica (insectos, animales, cerebro humano)







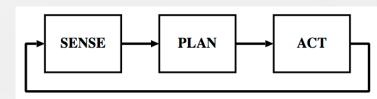




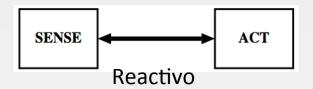

- Control proporcional, derivativo, integral (PID)
  - Ampliamente estudiado y utilizado en sistemas de control industrial y en tareas simples en robótica autónoma
- El control clásico no es aplicable en tareas de alto nivel que requieran adaptación a cambios, interacción con humanos u otros robots, etc

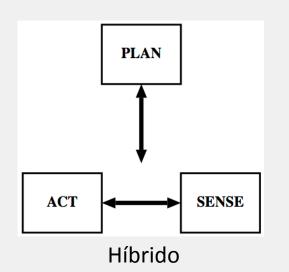





# Arquitecturas de control

- Las arquitecturas de control generalizan el concepto de controlador y constituyen una aproximación al "cerebro" del robot:
  - Selección de acciones
  - Percepción y procesado de la información sensorial
  - Interpretación de la información sensorial para la creación de estados internos, modelos internos y externos
  - Almacenamiento en memoria de la información más relevante




- Deliberativas
  - Basadas en el uso de modelos
  - Planificación
  - Representación del conocimiento
- Reactivas
  - Controladores reactivos simples
  - Adaptación intrínseca al entorno
  - Robótica basada en comportamientos
  - Limitación en tareas complejas
- Híbridas
  - Ventajas e inconvenientes de ambas aproximaciones



Deliberativo











- Los robots futuros serán máquinas muy versátiles
  - Robots de servicio
- Se requiere un mayor nivel de autonomía
  - Aprendizaje autónomo de su propia experiencia,
    de un profesor o de otros robots por imitación
  - Adaptabilidad intrínseca al aprendizaje
- Las arquitecturas de control tradicionales no han mostrado grandes avances a nivel de aprendizaje autónomo en problemas reales
- En la última década se está cambiando el enfoque desde los sistemas de control a los sistemas cognitivos







# Cognición

# **DEFINICIÓN** (The American Heritage Dictionary of the English Language)

• The mental **process of knowing**, including aspects such as awareness, perception, **reasoning**, and **judgment** 

# PSICOLOGÍA (procesos cognitivos)

 Procesos mentales implicados en la adquisición de conocimiento y comprensión, incluyendo pensar, conocer, recordar, juzgar y resolver problemas

**COMPUTACIÓN** (D. Vernon, G. Metta, G. Sandini: *A survey of artificial cognitive systems: Implications for the autonomous development of mental capabilities in computational agents*, IEEE Transactions on Evolutionary Computation 11(2), 151–180, 2007)

 Proceso por el cual el sistema adquiere un comportamiento adaptativo, anticipatorio y autónomo robusto, ligado a la percepción y acción en un cuerpo físico

# iie 📆

# Robot cognitivo

- Un robot cognitivo se caracteriza por su capacidad para adquirir conocimiento de forma autónoma y por su capacidad adaptativa
- Se utiliza el modelo cerebral humano como inspiración:
  - Habilidades neurocognitivas y psicológicas humanas
  - Las tareas cognitivas como percepción, aprendizaje, memoria, emociones, razonamiento, toma de decisiones, comportamientos, lenguaje, consciencia, atención, etc se modelan y se utilizan como fuente de inspiración para los robots autónomos
  - Aproximaciones bio-inspiradas y no bio-inspiradas

# Arquitectura cognitiva

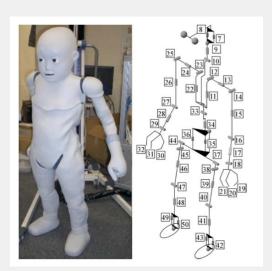
- Implementación computacional del modelo cognitivo
- Contienen el sustrato de todas las funcionalidades cognitivas
- Son sistemas muy complejos
  - Ciertas funcionalidades se estudian en profundidad y otras no
- Aproximaciones simbólicas, sub-simbólicas e híbridas
  - Estructuras y dinámicas del cerebro difíciles de replicar para las aproximaciones puramente simbólicas por su plasticidad y dinamismo
  - Procesos de razonamiento de alto nivel son complejos de representar utilizando aproximaciones sub-simbólicas
- Bottom-up y Top-down



# Arquitecturas cognitivas

- No nativas para robótica:
  - SOAR, ACT-R, LIDA, MicroPsi, 4D/RCS, OpenCogPrime
- Nativas para robótica:
  - IMA, BBD, Shanahan's global workspace
  - Cognitive Developmental Robotics
    - Intelligent Machine Architecture IMA (Kawamura)
    - Brain-Based Devices BBD (Krichmar)
    - Self-Afecting Self Aware Cognitive Architecture SASE (Weng)
    - Multilevel Darwinist Brain MDB (Bellas)

# Cognitive Developmental Robotics




# Cognitive Developmental Robotics (CDR)

- Las aproximaciones clásicas en robótica autónoma implementan de forma explícita una estructura de control en el cerebro del robot derivada del entendimiento del diseñador de la física del robot.
- En CDR, la estructura debería reflejar los propios procesos de entendimiento del robot mediante su interacción con el entorno
- Epigenetic robots: is a scientific field which aims at studying the developmental mechanisms, architectures and constraints that allow lifelong and open-ended learning of new skills and new knowledge in embodied machines

M. Asada, K. Hosoda, Y. Kuniyoshi, H. Ishiguro, T. Inui, Y. Yoshikawa, M. Ogino, C. Yoshida: *Cognitive Developmental Robotics: A Survey*, IEEE Transactions Autonomous Mental Development 1(1), 12–34 (2009)







# Cognitive Developmental Robotics (CDR)

# Objetivo:

 Diseñar sistemas autónomos abiertos que se adapten a su entorno de forma continua en oposición a construir robots específicos para tareas concretas

# Developmental:

- Adquisición progresiva de capacidades predictivas anticipatorias a lo largo del tiempo mediante la propia experiencia
- La idea central de CDR es el "physical embodiment"
- El proceso de desarrollo se realiza en 2 fases:
  - Desarrollo del individuo en un etapa temprana
  - Desarrollo social mediante interacción con otros individuos





- 1. Deben soportar las dinámicas de las **estructuras neuronales** en las diferentes regiones del cerebro y la **conectividad** entre ellas
- 2. Deben ser **generadoras de modelos** más que ajustar dichos modelos, organizando las señales sensoriales en categorías sin conocimiento previo
- 3. El cuerpo del agente especifica las restricciones en la interacción con su entorno que generan y la estructura de interacción con el entorno: **embodiment**
- 4. Deben tener un conjunto de **comportamientos innatos** o reflejos para poder explorar y sobrevivir en su entorno en las etapas iniciales
- 5. Deben mostrar **capacidades adaptativas** de cara a mejorar e incrementar el conjunto de comportamientos innatos

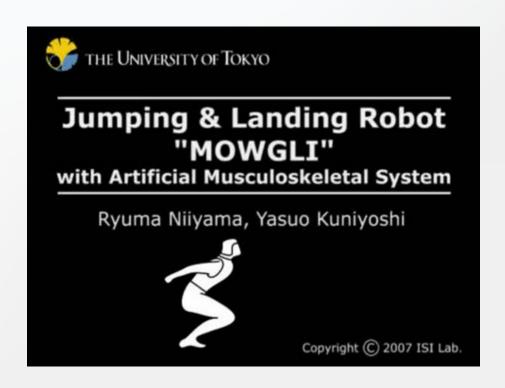


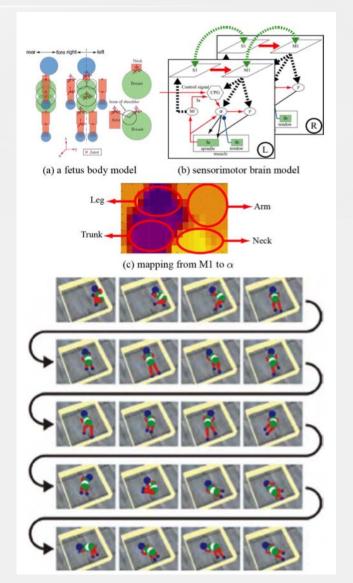
# Tradicional vs. Developmental

## Tradicional:

- Comienza con una tarea planteado por el diseñador humano
- Se diseña una representación específica de la tareas
- Se programa dicha tarea
- Se ejecuta el programa en el robot

## Desarrollo autónomo:


- Se diseña un cuerpo robótica acorde con las condiciones de trabajo
- Se diseña un programa de desarrollo
- El robot comienza la ejecución del programa de desarrollo
- Para que el "cerebro" del robot se desarrolle, el robot interactúa con su entorno,
  con otros robots y con humanos

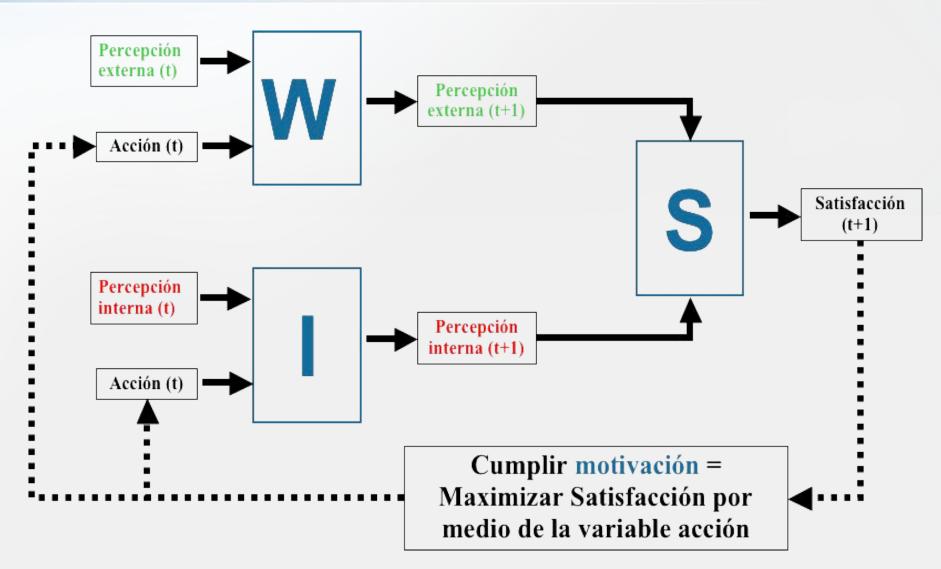

# Temas actuales en CDR

- Adquisición de representación corporal (desarrollo fetal)
- Movimientos dinámicos voluntarios (gatear, caminar, saltar):
  - Habilidades motoras
  - Desarrollo del sistema músculo/esquelético
- Representación cuerpo/motor y percepción espacial
  - Marco de referencia
- Desarrollo de comportamientos sociales
  - Comunicación temprana
  - Entendimiento de la actuación
  - Imitación
  - Empatía
  - Comunicación verbal



## Temas actuales en CDR

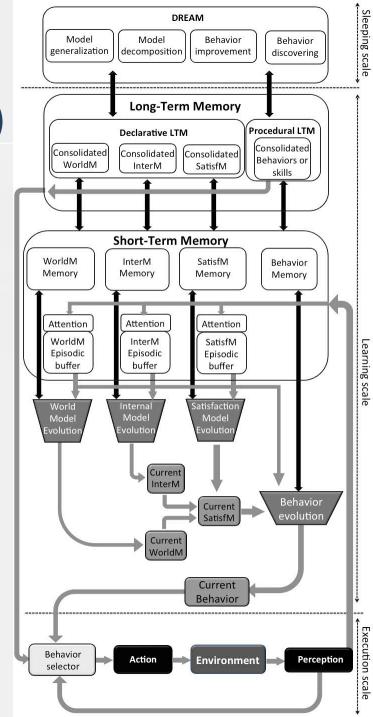






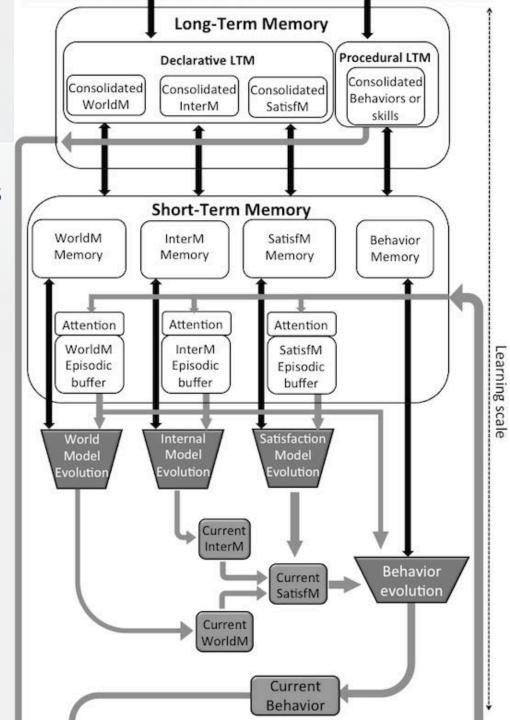

Multilevel Darwinist Brain




# Modelo cognitivo básico

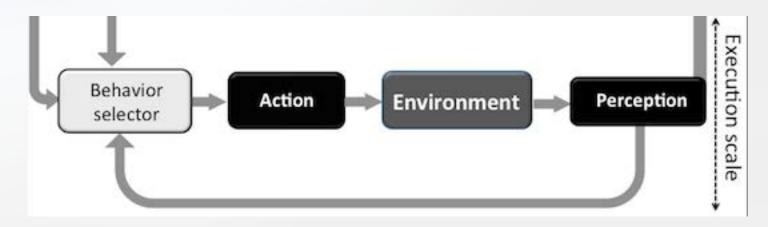


# Multilevel Darwinist Brain (MDB)


- Arquitectura cognitiva para robots autónomos que opera en entornos dinámicos y en tiempo real
- Tres escalas temporales (arquitecturas híbridas)
  - 1. Ejecución
  - 2. Aprendizaje
  - 3. Sueño

Bellas, F., Duro, R.J., Faina, A., Souto, D., *Multilevel Darwinist Brain (MDB): Artificial Evolution in a Cognitive Architecture for Real Robots*, IEEE Transactions on Autonomous Mental Development, vol 2, num 4, pp 340-354, 2010

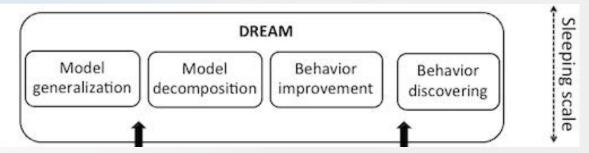



# Multilevel Darwinist Brain (MDB)

- Modelos: estructuras predictivas (conocimiento declarativo)
- Comportamientos: estructuras de decisión (conocimiento procedural)
- Se obtienen por evolución
- *Episodios*: muestras del mundo real
- Memorias: Long-Term (LTM) y Short-Term (STM)






# Multilevel Darwinist Brain (MDB)

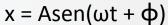


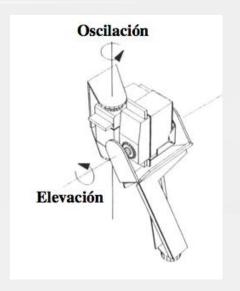
- Selección de comportamientos
  - El comportamiento actual lo proporciona la escala de aprendizaje (por defecto)
  - Los comportamientos se almacenan en la LTM
- El comportamiento proporciona la acción a los actuadores del robot de acuerdo con las percepciones actuales hasta que se reemplaza por uno diferente



## **DREAM**




- Generalización de modelos: creación de nuevos modelos combinando los existentes en la LTM declarativa
- Descomposición de modelos: en otros más simples que capturen las componentes primitivas de la sensorización externa e interna
- Mejora de comportamientos: procesos de aprendizaje más profundos en los comportamientos obtenidos en la escala de aprendizaje
- Descubrimiento de comportamientos: combinando modelos (de diferentes modalidades sensoriales, por ejemplo) en la LTM procedural para obtener nuevos comportamientos




# Ejemplo 1. Aprendizaje de modelos



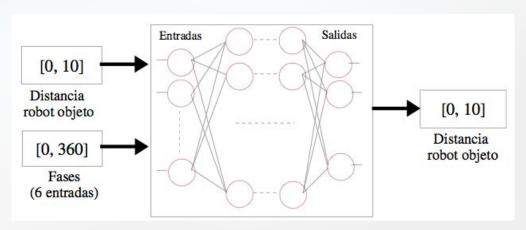
Robot Hermes II

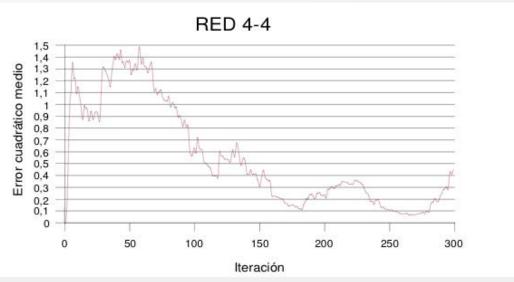




### Motor de elevación:

 Fijamos todos los parámetros


#### Motor de oscilación:


- Fase inicial variable
- Amplitud variable

F. Bellas, R. J. Duro, *Multilevel Darwinist Brain in Robots: Initial Implementation*, Proceedings ICINCO 2004, pp 25-33, 2004



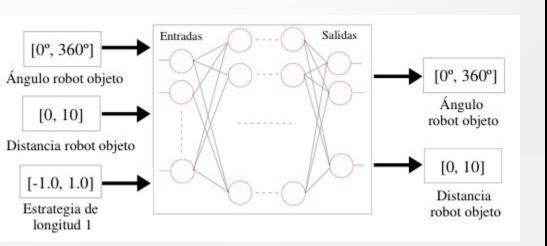
# Modelo de mundo simple

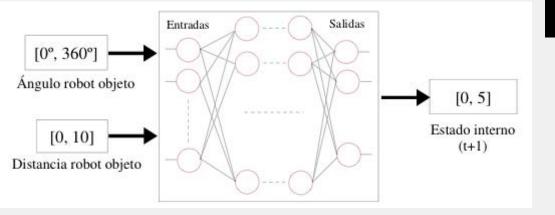




# Robot Hermes II aprendiendo a caminar

MCP FIFO con 40 episodios





# Elefante aprendiendo a caminar





# Modelo de mundo y satisfacción





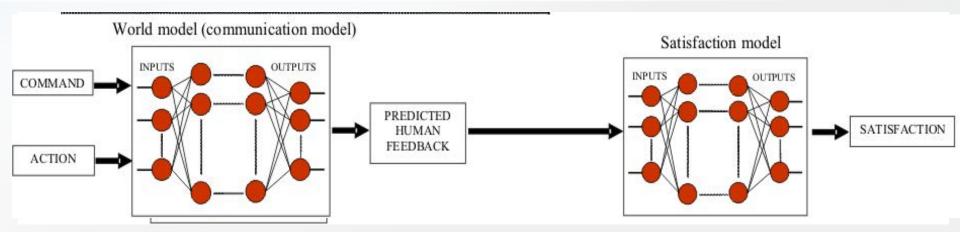
# Robot Hermes II aprendiendo a girar

MCP FIFO con 40 registros



# Ejemplo 2. Developmental

 Se utilizan dos modelos de mundo, uno cuando existe profesor y se deben seguir sus órdenes y otro cuando el robot está sólo






F. Bellas, J.A. Becerra, R.J. Duro, *Induced behaviour in a Real Agent using the Multilevel Darwinist Brain*, LNCS 3562, pp 425-436, 2005



# Modelo inducido



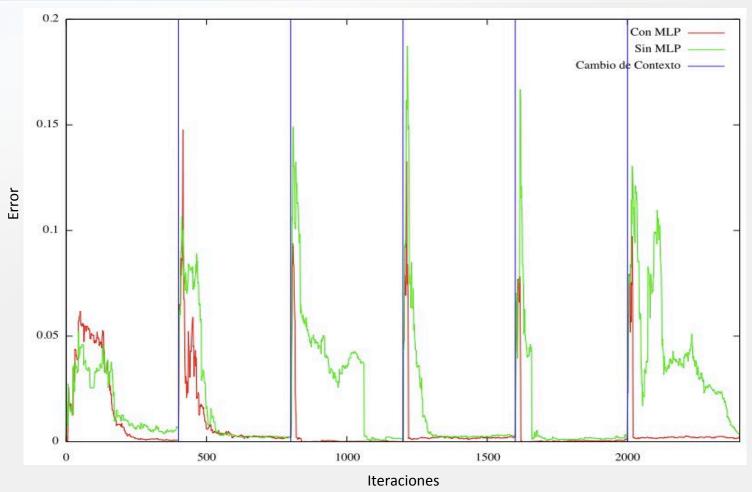
## Operación con profesor:

- El modelo de mundo utiliza un sensor de sonido para los comandos del profesor y el teclado para las recompensas
- Siempre que hay profesor se le debe obedecer
- MCP con estrategia de reemplazo equilibrada y 20 registros

## Operación sin profesor:

- El modelo de mundo utiliza los sensores de sonar (únicos disponibles sin profesor)
- Al detectar la falta de órdenes se continua con el comportamiento inducido
- MCP con estrategia de reemplazo equilibrada y 20 registros



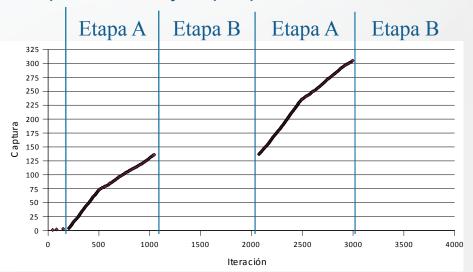



# Operation with teacher

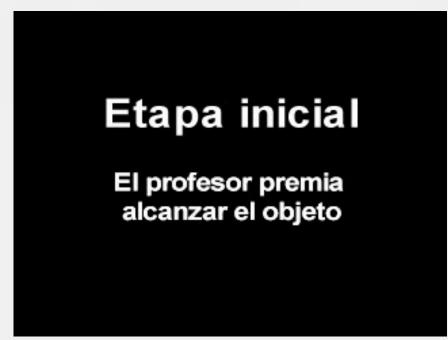
Iterations 1-4



# Ejemplo 3. Pruebas MLP




Rodrigo Salgado, Francisco Bellas, Borja Santos-Diez, Pilar Caamaño, Richard Duro, *A Procedural Long Term Memory for Cognitive Robotics. Optimizing Adaptive Learning in Dynamic Environments* (Best paper award), Proceedings of the 2012 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS 2012), pp. 1-8, IEEE Press, 2012




## Cambio de modelo de satisfacción

## Capturas del objeto por parte del robot Pioneer 2



Tras 4000 iteraciones, la MLP almacena 2 modelos, uno para cada profesor





# Ejemplo 4. Comportamientos y DREAM

- Operación on-line: Pioneer 2DX simulado con el objetivo de capturar una luz en movimiento mediante dos sensores de luz
  - Modelo de luz
  - Comportamiento de seguir la luz
  - Modelo de sonar

R.J. Duro, F. Bellas, J.A. Becerra, R. Salgado, A Role for Sleep in Artificial Cognition through Deferred Restructuring of Experience in Autonomous Machines, SAB 2014, LNAI 8575, pp. 1–10, 2014.





# Ejemplo 4. Comportamientos y DREAM

- Operación off-line (DREAM): se evoluciona un nuevo comportamiento in la escala de sueño utilizando el modelo de sonar como simulador
  - Comportamiento Sonar





# Conclusiones

- El enfoque hacia los sistemas de control avanzados de la robótica tradicional no parece adecuado para dotar a la siguiente generación de robots de la autonomía necesaria
- Los modelos cognitivos inspirados en el cerebro humano proporcionan un nuevo enfoque basado en el desarrollo autónomo progresivo de las capacidades del robot en su entorno y con su propio cuerpo como elementos básicos

# ناو بنا

# Referencias

- IEEE Transactions on Autonomous Mental Development,
  IEEE Press
- "Neuromorphic and Brain-Based Robots", Jeffrey L.
  Krichmar, Hiroaki Wagatsuma, Cambridge University Press, 2011
- "Enaction: Toward a New Paradigm for Cognitive Science", John Stewart, Olivier Gapenne, Ezequiel A. Di Paolo, A Bradford Book, 2014
- "How Brains Make Up Their Minds", Walter J. Freeman, Columbia University Press, 2011