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What is this about?

• Latent variables 	



• Hidden variables (not observables) but 
inferred from the others	



• Reduce dimensionality	



• Examples: quality of life, happiness, …
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vector qi ∈ f, and each user u is associ-
ated with a vector pu ∈ f. For a given item 
i, the elements of qi measure the extent to 
which the item possesses those factors, 
positive or negative. For a given user u, 
the elements of pu measure the extent of 
interest the user has in items that are high 
on the corresponding factors, again, posi-
tive or negative. The resulting dot product,  
qi

T pu, captures the interaction between user 
u and item i—the user’s overall interest in 
the item’s characteristics. This approximates 
user u’s rating of item i, which is denoted by 
rui, leading to the estimate 

 
r̂ui  

= qi
T pu. (1) 

The major challenge is computing the map-
ping of each item and user to factor vectors 
qi, pu ∈ f. After the recommender system 
completes this mapping, it can easily esti-
mate the rating a user will give to any item 
by using Equation 1. 

Such a model is closely related to singular value decom-
position (SVD), a well-established technique for identifying 
latent semantic factors in information retrieval. Applying 
SVD in the collaborative filtering domain requires factoring 
the user-item rating matrix. This often raises difficulties 
due to the high portion of missing values caused by sparse-
ness in the user-item ratings matrix. Conventional SVD is 
undefined when knowledge about the matrix is incom-
plete. Moreover, carelessly addressing only the relatively 
few known entries is highly prone to overfitting. 

Earlier systems relied on imputation to fill in missing 
ratings and make the rating matrix dense.2 However, im-
putation can be very expensive as it significantly increases 
the amount of data. In addition, inaccurate imputation 
might distort the data considerably. Hence, more recent 
works3-6 suggested modeling directly the observed rat-
ings only, while avoiding overfitting through a regularized 
model. To learn the factor vectors (pu and qi), the system 
minimizes the regularized squared error on the set of 
known ratings: 

min
* *,q p ( , )u i

(rui − qi
Tpu)

2 + λ(|| qi ||
2 + || pu ||

2)  (2) 

Here, κ is the set of the (u,i) pairs for which rui is known 
(the training set). 

The system learns the model by fitting the previously 
observed ratings. However, the goal is to generalize those 
previous ratings in a way that predicts future, unknown 
ratings. Thus, the system should avoid overfitting the 
observed data by regularizing the learned parameters, 
whose magnitudes are penalized. The constant λ controls 

recommendation. These methods have become popular in 
recent years by combining good scalability with predictive 
accuracy. In addition, they offer much flexibility for model-
ing various real-life situations. 

Recommender systems rely on different types of 
input data, which are often placed in a matrix with one 
dimension representing users and the other dimension 
representing items of interest. The most convenient data 
is high-quality explicit feedback, which includes explicit 
input by users regarding their interest in products. For 
example, Netflix collects star ratings for movies, and TiVo 
users indicate their preferences for TV shows by pressing 
thumbs-up and thumbs-down buttons. We refer to explicit 
user feedback as ratings. Usually, explicit feedback com-
prises a sparse matrix, since any single user is likely to 
have rated only a small percentage of possible items. 

One strength of matrix factorization is that it allows 
incorporation of additional information. When explicit 
feedback is not available, recommender systems can infer 
user preferences using implicit feedback, which indirectly 
reflects opinion by observing user behavior, including pur-
chase history, browsing history, search patterns, or even 
mouse movements. Implicit feedback usually denotes the 
presence or absence of an event, so it is typically repre-
sented by a densely filled matrix. 

A BASIC MATRIX FACTORIZATION MODEL 
Matrix factorization models map both users and items 

to a joint latent factor space of dimensionality f, such that 
user-item interactions are modeled as inner products in 
that space. Accordingly, each item i is associated with a 
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Figure 2. A simplified illustration of the latent factor approach, which 
characterizes both users and movies using two axes—male versus female 
and serious versus escapist. 
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What is this about?

• Methods for inferring latent variables 	



• Hidden Markov models	



• Factor analysis	



• PCA (Principal Component Analysis)	



• LSA (Latent Semantic Analysis)	



• Bayesian methods
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What is this about?

• Latent variables 	



• Embedding in Euclidean Spaces	



• Factorization	



• Machine Learning tool for regression, 
classification or ranking
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Where is it useful?

• Tasks where the interaction of two factors 
is essential:	



• Consumer and items	


• Queries and users	


• Images and sets of labels	


• …	



• Each factor is described by a set of 
variables
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The core formula

This includes

X

i,j

mijxiyj

X

i,j

aijxiyj +
X

i

bixi +
X

j

cjyj + d

(xT
,y

T ) =
⇣
(x1, . . . , x|x|), (y1, . . . , y|y|))

⌘

(xT
,y

T ) 
⇣
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⌘
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The core formula

Tensor product	



!

!

!

!

X

i,j

mijxiyj = h(mij : i, j),x⌦ yi

(xT
,y

T ) =
⇣
(x1, . . . , x|x|), (y1, . . . , y|y|))

⌘
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The core formula
Bilinear presentation	



!

Needs 	



!

parameters: usually too much! 	



!

!

|M | = |x|⇥ |y|

X

i,j

mijxiyj = x

T
My

10



The core formula

The set of parameters is factorized in two 
matrices	



!

X

i,j

mijxiyj = x

T
My = x

T (W T
V )y

M = W TV

X

i,j

mijxiyj = x

T
My = x

T (W T
V )y

= (Wx)TV y = hWx,V yi
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The core formula

!

Geometric meaning: similarity of 
representations in a common Euclidean space	



!

!

Latent variables

X

i,j

mijxiyj = hWx,V yi

R|x| �! Rk, x Wx,

R|y| �! Rk, y  V y,
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!
Wx

Vy

13

The core formula



The core formula
!

Needs 	



!

parameters instead of	



!

!

Warning: it is not the same solution. But it is enough 
good. Better, if we have to learn it!

X

i,j

mijxiyj = hWx,V yi

|W |+ |V | = |x|⇥ k + |y|⇥ k =
⇣
|x|+ |y|

⌘
⇥ k

|M | = |x|⇥ |y|
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The core formula

!

Columns of W and V are latent variables in the 
sense used in Information Retrieval (LSI) or 
Statistics (PCA)

X

i,j

mijxiyj = hWx,V yi
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Therefore, factorization

• Useful when variables	



can be split in two parts 	



interaction is relevant to make predictions 	



• Needs less parameters to learn	



• Has a geometric semantics	



• Learns latent variables that filter noisy 
information

16



Contents

• What is this about?	



• Application: learning to order things	



• Take-home messages
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Ordering is important

• Which document is the most relevant for this query? 	



• Which movies are likely to be enjoyed by a user?	



• Which kind of (...food product...) is going to be 
preferred by consumers?	



• Which assignment deserves a higher grade?	



• Which diet is better for me?
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Applications

• Recommender Systems: 	



Netflix Prize	


News recommendations	



• Information Retrieval	



Music annotations	


Image tagging	



• Analysis of consumer preferences of food products	



• Assessment in MOOCs
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RS: Definitions
RS are software agents that elicit the interests and preferences 
of individual consumers and make recommendations accordingly.	



RS help to match users with items	



• Ease information overload	



• Sales assistant (guidance, advisory, persuasion,...)	



Different system designs / paradigms based on availability of 
exploitable data	



• Implicit or explicit user feedback	



• Domain characteristics
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Popular RS

• Google	



• Genius (Apple)	



• last.fm	



• Amazon	



• Netflix	



• TiVo
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Collaborative Filtering
• To relate users and items	



• explicit feedback (ratings)	


• implicit (purchase or browsing history, search 

patterns, ...)	


• sometimes items descriptions by feature (content 

based)	



• Approaches:	



• neighborhood	


• latent factor 

22



Naïve Neighborhood Approach

!

   item-item                 user-user	



!

!

!

item1 item2 item3 item4 item5

alice 5 3 4 4 ?

user1 3 1 2 3 3

user2 4 3 4 3 5

user3 3 3 1 5 4

user4 1 5 5 2 1

23

Compute similarity → prediction



!

user-user	



!

!

!

item1 item2 item3 item4 item5

alice 5 3 4 4 ?

user1 3 1 2 3 3

user2 4 3 4 3 5

user3 3 3 1 5 4

user4 1 5 5 2 1
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Naïve Neighborhood Approach



!

item-item	



!

!

!

item1 item2 item3 item4 item5

alice 5 3 4 4 ?

user1 3 1 2 3 3

user2 4 3 4 3 5

user3 3 3 1 5 4

user4 1 5 5 2 1
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Naïve Neighborhood Approach



!

• not all neighbors should be taken into 
account (similarity thresholds)	



• not all items are rated (co-rated)	



• not involved the loss function

Naïve Neighborhood Approach
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Netflix Prize
(Sep, 21, 2009):	



 Netflix Awards $1 Million Prize and Starts a New Contest 

[...]try to predict what movies particular customers would prefer	


 	



“Predicting the movies Netflix members will love is a key 
component of our service,” said Neil Hunt, chief product officer 

(Netflix)	



!

27



The Netflix dataset	



More than 100 million movie ratings (1-5 stars)	



Nov 11, 1999 and Dec 31, 2005	



• about 480,189 users and n = 17,770 movies	



• 99% of possible ratings are missing	



movie average 5,600 ratings	


user rates average 208 movies	



Training and quiz (test-prize) data

28

Netflix Prize



The loss function: root mean squared error (RMSE)	



!

!

Netflix had its own system, Cinematch, which achieved 
0.9514.	



The prize winner had to reach RMSE below 0.8563 
(10% improvement)

29

RMSE “
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Netflix Prize



For example, suppose that you 
want a first-order estimate for 
user Joe’s rating of the movie 
Titanic. Now, say that the average 
rating over all movies, μ, is 3.7 
stars. Furthermore, Titanic is 
better than an average movie, so 
it tends to be rated 0.5 stars 
above the average. On the other 
hand, Joe is a critical user, who 
tends to rate 0.3 stars lower than 
the average. Thus, the estimate 
for Titanic’s rating by Joe would 
be 3.9 stars (3.7 + 0.5 - 0.3).

30

f(u, i) = µ+ bUu + bIi + P uQi
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vector qi ∈ f, and each user u is associ-
ated with a vector pu ∈ f. For a given item 
i, the elements of qi measure the extent to 
which the item possesses those factors, 
positive or negative. For a given user u, 
the elements of pu measure the extent of 
interest the user has in items that are high 
on the corresponding factors, again, posi-
tive or negative. The resulting dot product,  
qi

T pu, captures the interaction between user 
u and item i—the user’s overall interest in 
the item’s characteristics. This approximates 
user u’s rating of item i, which is denoted by 
rui, leading to the estimate 

 
r̂ui  

= qi
T pu. (1) 

The major challenge is computing the map-
ping of each item and user to factor vectors 
qi, pu ∈ f. After the recommender system 
completes this mapping, it can easily esti-
mate the rating a user will give to any item 
by using Equation 1. 

Such a model is closely related to singular value decom-
position (SVD), a well-established technique for identifying 
latent semantic factors in information retrieval. Applying 
SVD in the collaborative filtering domain requires factoring 
the user-item rating matrix. This often raises difficulties 
due to the high portion of missing values caused by sparse-
ness in the user-item ratings matrix. Conventional SVD is 
undefined when knowledge about the matrix is incom-
plete. Moreover, carelessly addressing only the relatively 
few known entries is highly prone to overfitting. 

Earlier systems relied on imputation to fill in missing 
ratings and make the rating matrix dense.2 However, im-
putation can be very expensive as it significantly increases 
the amount of data. In addition, inaccurate imputation 
might distort the data considerably. Hence, more recent 
works3-6 suggested modeling directly the observed rat-
ings only, while avoiding overfitting through a regularized 
model. To learn the factor vectors (pu and qi), the system 
minimizes the regularized squared error on the set of 
known ratings: 

min
* *,q p ( , )u i

(rui − qi
Tpu)

2 + λ(|| qi ||
2 + || pu ||

2)  (2) 

Here, κ is the set of the (u,i) pairs for which rui is known 
(the training set). 

The system learns the model by fitting the previously 
observed ratings. However, the goal is to generalize those 
previous ratings in a way that predicts future, unknown 
ratings. Thus, the system should avoid overfitting the 
observed data by regularizing the learned parameters, 
whose magnitudes are penalized. The constant λ controls 

recommendation. These methods have become popular in 
recent years by combining good scalability with predictive 
accuracy. In addition, they offer much flexibility for model-
ing various real-life situations. 

Recommender systems rely on different types of 
input data, which are often placed in a matrix with one 
dimension representing users and the other dimension 
representing items of interest. The most convenient data 
is high-quality explicit feedback, which includes explicit 
input by users regarding their interest in products. For 
example, Netflix collects star ratings for movies, and TiVo 
users indicate their preferences for TV shows by pressing 
thumbs-up and thumbs-down buttons. We refer to explicit 
user feedback as ratings. Usually, explicit feedback com-
prises a sparse matrix, since any single user is likely to 
have rated only a small percentage of possible items. 

One strength of matrix factorization is that it allows 
incorporation of additional information. When explicit 
feedback is not available, recommender systems can infer 
user preferences using implicit feedback, which indirectly 
reflects opinion by observing user behavior, including pur-
chase history, browsing history, search patterns, or even 
mouse movements. Implicit feedback usually denotes the 
presence or absence of an event, so it is typically repre-
sented by a densely filled matrix. 

A BASIC MATRIX FACTORIZATION MODEL 
Matrix factorization models map both users and items 

to a joint latent factor space of dimensionality f, such that 
user-item interactions are modeled as inner products in 
that space. Accordingly, each item i is associated with a 
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Figure 2. A simplified illustration of the latent factor approach, which 
characterizes both users and movies using two axes—male versus female 
and serious versus escapist. 
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Koren and Bell, set an optimization problem that 
admits an efficient solution and avoids the problem of 
missing values	



!

!

!

!

qi and pu are vectors of k components

8 Yehuda Koren and Robert Bell

is created by also adding in the aforementioned baseline predictors that depend only
on the user or item. Thus, a rating is predicted by the rule

r̂ui = µ+bi+bu+qTi pu . (2)

In order to learn the model parameters (bu,bi, pu and qi) we minimize the regu-
larized squared error

min
b∗,q∗,p∗

∑
(u,i)∈K

(rui−µ−bi−bu−qTi pu)2+λ4(b2i +b2u+∥qi∥2+∥pu∥2) .

The constant λ4, which controls the extent of regularization, is usually determined
by cross validation. Minimization is typically performed by either stochastic gradi-
ent descent or alternating least squares.
Alternating least squares techniques rotate between fixing the pu’s to solve for the

qi’s and fixing the qi’s to solve for the pu’s. Notice that when one of these is taken as
a constant, the optimization problem is quadratic and can be optimally solved; see
[2, 4].
An easy stochastic gradient descent optimization was popularized by Funk [10]

and successfully practiced by many others [17, 23, 24, 28]. The algorithm loops
through all ratings in the training data. For each given rating rui, a prediction (r̂ui)
is made, and the associated prediction error eui

def
= rui− r̂ui is computed. For a given

training case rui, we modify the parameters by moving in the opposite direction of
the gradient, yielding:

• bu ← bu+ γ · (eui−λ4 ·bu)
• bi ← bi+ γ · (eui−λ4 ·bi)
• qi ← qi+ γ · (eui · pu−λ4 ·qi)
• pu ← pu+ γ · (eui ·qi−λ4 · pu)

When evaluating the method on the Netflix data, we used the following values for
the meta parameters: γ = 0.005,λ4 = 0.02. Henceforth, we dub this method “SVD”.
A general remark is in place. One can expect better accuracy by dedicating sepa-

rate learning rates (γ) and regularization (λ ) to each type of learned parameter. Thus,
for example, it is advised to employ distinct learning rates to user biases, item biases
and the factors themselves. A good, intensive use of such a strategy is described in
Takács et al. [29]. When producing exemplary results for this chapter, we did not
use such a strategy consistently, and in particular many of the given constants are
not fully tuned.

3.2 SVD++

Prediction accuracy is improved by considering also implicit feedback, which pro-
vides an additional indication of user preferences. This is especially helpful for those
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Takács et al. [29]. When producing exemplary results for this chapter, we did not
use such a strategy consistently, and in particular many of the given constants are
not fully tuned.

3.2 SVD++

Prediction accuracy is improved by considering also implicit feedback, which pro-
vides an additional indication of user preferences. This is especially helpful for those

Netflix Prize Winner

31



News Recommendations

• The aim is to keep readers online with 
personalized recommendations to read next	



• There are already a number of implicit or 
explicit recommendations in digital 
newspapers	



• A news recommender should suggest news 
of interest for readers that are not explicitly 
linked by other recommenders
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News Recommendations

• Learning task: find a function to map from 
trajectories of already read news to news to 
be read in the future. It is multilabel 
classification task 	



!

!

• Both sets of news are going to be embedded 
in a common Euclidean space

33

Past news Future news



News Recommendations

• Learning task	



• represent reading trajectories	


• represent news	


• in such a way that interesting news for 

readers are near to their trajectories	


!

!f(r, i) = �||�
trajectory

(r)� �
art

(i)||2

= 2(Wr)TV
i

� (Wr)T (Wr)� (V
i

)TV
i

34



News Recommendations

!
next (Vi)

trajectory (Wr)
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News Recommendations
!

Optimize ranking loss:	



WARP (Weighted Approximately Ranked Pairwise)	



!

!

!

!

where p is a positive example and n a negative one

WARP
error

=

X

j

L(↵)max(0, 1� f(r
j

, p) + f(r
j

, n))
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News Recommendations
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MOOCs assessment

• MOOCs are expensive:	



• $ 50,000 filming	


• $ 50,000 hosting	


• Intelligent services (answering questions, evaluation of 

assignments)	



• Prestigious universities are interested because:	



• Open: Kind of ad to attract students for regular courses	


• Licensing courses: for Universities without specialist in 

high level courses. These universities provide TA 
(cheaper than Professors that are not really available) 
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MOOCs: peer evaluation

• Assignments are difficult to be evaluated by 
computers. Open-responses. Essay. Graphical 
illustrations. Pictures.	



• Metaphor of Conference papers	



• Students submit assignments as papers.	



• Students will serve as reviewers	



• Students receive a rubric (a set of rules to uniform 
grades)

39



• Someone or a simple software will assign 
assignments (papers) to other students (reviewers). 	



!

• Students will be advised that they are going to be 
evaluated as authors and as reviewers. 

MOOCs: peer evaluation
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Each grader g receives a subset of assignments and 
provides a grade	



!

!

Embedding of graders and assignments	



!

!

MOOCs: peer evaluation

g(i) 2 [0, 10]

8g 2 G, g(i) > g(j) ) [g, i, j] 2 PJ

41

�gr(g) : G ! Rk, g 7! Wg,

�a(i) : A ! Rk, i 7! V i.



The ranking will be given by the average of learned 
grades	



!

!

!

This rank should be as coherent as possible with the 
ranks of graders	



MOOCs: peer evaluation
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f(G, i) = � 1

|G|

������

������

X

g2G
�gr(g)� �a(i)

������

������

2



Define error in order to maximize the margin	



!

!

regularization	



!

Then we need to optimize

MOOCs: peer evaluation

r(W ,V ) =
��W

��2
F
+

��V
��2
F

argmin
W ,V

(err(W ,V ) + ⌫r(W ,V ))
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err(W ,V ) =

X

[g,i,j]2PJ

max

⇣
0, 1� f(G, i) + f(G, j)

⌘
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a1 a2 a3 a4 a5

g1 6 8 4

g2 10 9 10

g3 4 6 3

g4 8 5 5 8

MOOCs: peer evaluation
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a1 a2 a3 a4 a5

g1 ★ 6 8 4 ★

g2 10 ★ 9 ★ 10

g3 ★ 4 6 3 ★

g4 8 5 ★ 5 8

MOOCs: peer evaluation
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a1 a2 a3 a4 a5

g1 ★ ★ ★ ★ ★

g2 ★ ★ ★ ★ ★

g3 ★ ★ ★ ★ ★

g4 ★ ★ ★ ★ ★

MOOCs: peer evaluation
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a1 a2 a3 a4 a5

g1 ★ ★ ★ ★ ★

g2 ★ ★ ★ ★ ★

g3 ★ ★ ★ ★ ★

g4 ★ ★ ★ ★ ★

★ ★ ★ ★ ★

MOOCs: peer evaluation



• The output of the learning process is a ranking of 
the assignments	



• Calibration by Professor	



• Some of the assignments will be evaluated by 
the Professor to find a way to convert ranking 
into assessments

MOOCs: peer evaluation
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Order assignments by	



!

!

!

!

!

MOOCs: peer evaluation
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f(G, i)

Graded by Professor to calibrate the ranking



The final grade of a student: weighted sum of evaluation 
as author (calibrated percentile) and as reviewer (AUC) 	



!

!

!

MOOCs: peer evaluation
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grade(i) = 0.7 · calibrated(f(G, i)) + 0.3 ·AUC(f, gi)



MOOCs: peer evaluation
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Table 1: Datasets description

# of assignment 208
# of graders 188
# of evaluations 1882
evaluations per grader 10.01 ± 0.77
evaluations per assignment 9.05 ± 1.71

Table 2: Description of grades in each dataset

Average Q1 Global

grade 6.34 ± 3.13 5.68 ± 2.63
range per assignment 7.22 ± 2.43 4.82 ± 1.93
range per grader 7.02 ± 2.65 6.81 ± 1.74

– adds some new preferences suggested by the so-
called Gaussian graders,

– uses a SGD to find a couple of matrices, W and
V .

• The evaluation of the performance is computed with
the whole set used for training, the learning task DPJ .

• The performance measure is the AUC (Eq. 14).

• The ranking computed by (Eq. 8) can be calibrated
to transform percentiles into valid grades. This can
be done using a table of equivalences or using grades
provided by the sta↵ for some assignments to make an
interpolation.

5. EXPERIMENTAL RESULTS
In this section we report the results obtained with the data-
sets described above. These data gathers assignments of 208
students from our three universities, 188 of these students
participated as graders (see Table 1) with a total of 1882
grades from 0 to 10. Each student received an average of
10 assignments to evaluate, and each assignment received in
average 9 grades.

In these experiments we considered 2 datasets. The first one
includes the grades given to the first question, we call it Q1.
The second dataset was formed with the global assessments
of the three questions, we call it Global. Table 2 shows the
average and typical deviation of grades for each dataset.
Additionally, this table displays the average range of grades
received by the assignments and given by graders. Let us
highlight the extension of the range of grades received by
the assignments; this is an indication of the di�culty of the
peer grading task. Figure 1 depicts the histograms of grades
received by the assignments for each dataset. Notice that the
deviations in the case of Q1 are greater than in the Global
dataset.

We built the sets of preference judgments as was explained
in Section 3. Then, the SGD was applied using in all cases
k = 10, and a learning rate defined in terms of the iteration
it by

�  1
(�s · it) + 1

.

Table 3: Comparative using all grades available

Dataset Model Avg.

Q1 0.7656 0.7532
Global 0.8451 0.8357

The parameters used were the results of a search of the best
scores in

�s 2 {10e : e = �7, . . . , 0}
⌫ 2 {0} [ {10e : e = �4, . . . ,�1}.

To evaluate the quality of the results, we used the AUC de-
fined in (Eq. 14). We compared the scores obtained with
the average of grades received by each assignment. Table 3
shows the scores of each method in each dataset using all
grades available. Notice that in all cases, our method out-
performs the baseline.

Next we check the sensibility of the method proposed in this
paper with respect to the number of assignment supplied
to student-graders to evaluate. For this purpose, we built
datasets sampling the original data with di↵erent number of
assignments per grader: from 5 to 11. We did the same for
the dataset about Q1 and for the dataset about the Global
grade.

The results are shown in Figure 2. In all cases our method
achieves better results than the baseline average. Let us
observe that the scores obtained in Q1 are clearly worse
than those obtain in the Global case. The reason is that in
Q1, graders found di�cult to assess the assignments. Notice
that the mean range of grades per assignment in Q1 is 7.22,
while in the Global case was only 4.82; see Table 2. The
performance of any grading method depends clearly on these
amounts.

Additionally, we appreciate an improvement of the scores
obtained with less assignments per grader. This is obvious
in Q1, and only a slight improvement in the Global case.
The reason is that the smaller number of grader’s prefer-
ences implies a smaller number of contradictions. Anyway,
more research has to be done in order to decide if this fact
means that the ideal ground truth is nearer to the model
learned with 5 assignments than to the model obtained with
all grades.

Finally, we studied the di↵erences between the rankings ob-
tained with our method and those obtained with the base-
line. The scatter plots of Figure 3 represent the position
in the ranking obtained using our method with 5 or all as-
signments (a maximum of 11) per grader (horizontal axis)
against the position achieved in the baseline (vertical axis).
In both dataset, we observe that both methods achieve more
similar results when we have 11 assignments per grader than
when we only have 5. In any case, the rankings are not the
same, of course.

6. CONCLUSIONS
We have presented a factorization method to implement peer
assessment. Our approach seeks a trade-o↵ between car-
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Take-home messages

• Learning task	



• Split variables. Interaction. 	



• Classification, regression, ranking
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Take-home messages

• Procedure 	



• Set embedding equations	



• Find optimal matrices for loss 
function and regularization	



• Use your favorite optimizer (SGD, 
proximal) 
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Take-home messages

• Advantages	



• Clean, principled	



• Noise-tolerant	



• Fast. Scalable to Big Data
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