
Variables latentes para
aprender a ordenar

Antonio Bahamonde.
Universidad de Oviedo. AEPIA

A Coruña, Septiembre, 2014

Contents

• What is this about?	

• Application: learning to order things	

• How to do this?	

• Take-home messages

2

What is this about?

• Latent variables 	

• Hidden variables (not observables) but
inferred from the others	

• Reduce dimensionality	

• Examples: quality of life, happiness, …

3

4

COVER FE ATURE

COMPUTER 32

vector qi ∈ f, and each user u is associ-
ated with a vector pu ∈ f. For a given item
i, the elements of qi measure the extent to
which the item possesses those factors,
positive or negative. For a given user u,
the elements of pu measure the extent of
interest the user has in items that are high
on the corresponding factors, again, posi-
tive or negative. The resulting dot product,
qi

T pu, captures the interaction between user
u and item i—the user’s overall interest in
the item’s characteristics. This approximates
user u’s rating of item i, which is denoted by
rui, leading to the estimate

r̂ui

= qi
T pu. (1)

The major challenge is computing the map-
ping of each item and user to factor vectors
qi, pu ∈ f. After the recommender system
completes this mapping, it can easily esti-
mate the rating a user will give to any item
by using Equation 1.

Such a model is closely related to singular value decom-
position (SVD), a well-established technique for identifying
latent semantic factors in information retrieval. Applying
SVD in the collaborative filtering domain requires factoring
the user-item rating matrix. This often raises difficulties
due to the high portion of missing values caused by sparse-
ness in the user-item ratings matrix. Conventional SVD is
undefined when knowledge about the matrix is incom-
plete. Moreover, carelessly addressing only the relatively
few known entries is highly prone to overfitting.

Earlier systems relied on imputation to fill in missing
ratings and make the rating matrix dense.2 However, im-
putation can be very expensive as it significantly increases
the amount of data. In addition, inaccurate imputation
might distort the data considerably. Hence, more recent
works3-6 suggested modeling directly the observed rat-
ings only, while avoiding overfitting through a regularized
model. To learn the factor vectors (pu and qi), the system
minimizes the regularized squared error on the set of
known ratings:

min
* *,q p (,)u i

(rui − qi
Tpu)

2 + λ(|| qi ||
2 + || pu ||

2) (2)

Here, κ is the set of the (u,i) pairs for which rui is known
(the training set).

The system learns the model by fitting the previously
observed ratings. However, the goal is to generalize those
previous ratings in a way that predicts future, unknown
ratings. Thus, the system should avoid overfitting the
observed data by regularizing the learned parameters,
whose magnitudes are penalized. The constant λ controls

recommendation. These methods have become popular in
recent years by combining good scalability with predictive
accuracy. In addition, they offer much flexibility for model-
ing various real-life situations.

Recommender systems rely on different types of
input data, which are often placed in a matrix with one
dimension representing users and the other dimension
representing items of interest. The most convenient data
is high-quality explicit feedback, which includes explicit
input by users regarding their interest in products. For
example, Netflix collects star ratings for movies, and TiVo
users indicate their preferences for TV shows by pressing
thumbs-up and thumbs-down buttons. We refer to explicit
user feedback as ratings. Usually, explicit feedback com-
prises a sparse matrix, since any single user is likely to
have rated only a small percentage of possible items.

One strength of matrix factorization is that it allows
incorporation of additional information. When explicit
feedback is not available, recommender systems can infer
user preferences using implicit feedback, which indirectly
reflects opinion by observing user behavior, including pur-
chase history, browsing history, search patterns, or even
mouse movements. Implicit feedback usually denotes the
presence or absence of an event, so it is typically repre-
sented by a densely filled matrix.

A BASIC MATRIX FACTORIZATION MODEL
Matrix factorization models map both users and items

to a joint latent factor space of dimensionality f, such that
user-item interactions are modeled as inner products in
that space. Accordingly, each item i is associated with a

Geared
toward
males

Serious

Escapist

The Princess
Diaries

Braveheart

Lethal Weapon

Independence
Day

Ocean’s 11
Sense and
Sensibility

Gus

Dave

Geared
toward

females

Amadeus

The Lion King Dumb and
Dumber

The Color Purple

Figure 2. A simplified illustration of the latent factor approach, which
characterizes both users and movies using two axes—male versus female
and serious versus escapist.

Netflix Prize Winner

What is this about?

• Methods for inferring latent variables 	

• Hidden Markov models	

• Factor analysis	

• PCA (Principal Component Analysis)	

• LSA (Latent Semantic Analysis)	

• Bayesian methods

5

What is this about?

• Latent variables 	

• Embedding in Euclidean Spaces	

• Factorization	

• Machine Learning tool for regression,
classification or ranking

6

Where is it useful?

• Tasks where the interaction of two factors
is essential:	

• Consumer and items	

• Queries and users	

• Images and sets of labels	

• …	

• Each factor is described by a set of
variables

7

The core formula

This includes

X

i,j

mijxiyj

X

i,j

aijxiyj +
X

i

bixi +
X

j

cjyj + d

(xT
,y

T) =
⇣
(x1, . . . , x|x|), (y1, . . . , y|y|))

⌘

(xT
,y

T)
⇣
(x1, . . . , x|x|, 1), (y1, . . . , y|y|, 1))

⌘

8

The core formula

Tensor product	

!

!

!

!

X

i,j

mijxiyj = h(mij : i, j),x⌦ yi

(xT
,y

T) =
⇣
(x1, . . . , x|x|), (y1, . . . , y|y|))

⌘

9

The core formula
Bilinear presentation	

!

Needs 	

!

parameters: usually too much! 	

!

!

|M | = |x|⇥ |y|

X

i,j

mijxiyj = x

T
My

10

The core formula

The set of parameters is factorized in two
matrices	

!

X

i,j

mijxiyj = x

T
My = x

T (W T
V)y

M = W TV

X

i,j

mijxiyj = x

T
My = x

T (W T
V)y

= (Wx)TV y = hWx,V yi

11

The core formula

!

Geometric meaning: similarity of
representations in a common Euclidean space	

!

!

Latent variables

X

i,j

mijxiyj = hWx,V yi

R|x| �! Rk, x Wx,

R|y| �! Rk, y V y,

12

!
Wx

Vy

13

The core formula

The core formula
!

Needs 	

!

parameters instead of	

!

!

Warning: it is not the same solution. But it is enough
good. Better, if we have to learn it!

X

i,j

mijxiyj = hWx,V yi

|W |+ |V | = |x|⇥ k + |y|⇥ k =
⇣
|x|+ |y|

⌘
⇥ k

|M | = |x|⇥ |y|

14

The core formula

!

Columns of W and V are latent variables in the
sense used in Information Retrieval (LSI) or
Statistics (PCA)

X

i,j

mijxiyj = hWx,V yi

15

Therefore, factorization

• Useful when variables	

can be split in two parts 	

interaction is relevant to make predictions 	

• Needs less parameters to learn	

• Has a geometric semantics	

• Learns latent variables that filter noisy
information

16

Contents

• What is this about?	

• Application: learning to order things	

• Take-home messages

17

Ordering is important

• Which document is the most relevant for this query? 	

• Which movies are likely to be enjoyed by a user?	

• Which kind of (...food product...) is going to be
preferred by consumers?	

• Which assignment deserves a higher grade?	

• Which diet is better for me?

18

Applications

• Recommender Systems: 	

Netflix Prize	

News recommendations	

• Information Retrieval	

Music annotations	

Image tagging	

• Analysis of consumer preferences of food products	

• Assessment in MOOCs

19

RS: Definitions
RS are software agents that elicit the interests and preferences
of individual consumers and make recommendations accordingly.	

RS help to match users with items	

• Ease information overload	

• Sales assistant (guidance, advisory, persuasion,...)	

Different system designs / paradigms based on availability of
exploitable data	

• Implicit or explicit user feedback	

• Domain characteristics

20

Popular RS

• Google	

• Genius (Apple)	

• last.fm	

• Amazon	

• Netflix	

• TiVo

21

Collaborative Filtering
• To relate users and items	

• explicit feedback (ratings)	

• implicit (purchase or browsing history, search

patterns, ...)	

• sometimes items descriptions by feature (content

based)	

• Approaches:	

• neighborhood	

• latent factor

22

Naïve Neighborhood Approach

!

 item-item user-user	

!

!

!

item1 item2 item3 item4 item5

alice 5 3 4 4 ?

user1 3 1 2 3 3

user2 4 3 4 3 5

user3 3 3 1 5 4

user4 1 5 5 2 1

23

Compute similarity → prediction

!

user-user	

!

!

!

item1 item2 item3 item4 item5

alice 5 3 4 4 ?

user1 3 1 2 3 3

user2 4 3 4 3 5

user3 3 3 1 5 4

user4 1 5 5 2 1

24

Naïve Neighborhood Approach

!

item-item	

!

!

!

item1 item2 item3 item4 item5

alice 5 3 4 4 ?

user1 3 1 2 3 3

user2 4 3 4 3 5

user3 3 3 1 5 4

user4 1 5 5 2 1

25

Naïve Neighborhood Approach

!

• not all neighbors should be taken into
account (similarity thresholds)	

• not all items are rated (co-rated)	

• not involved the loss function

Naïve Neighborhood Approach

26

Netflix Prize
(Sep, 21, 2009):	

 Netflix Awards $1 Million Prize and Starts a New Contest

[...]try to predict what movies particular customers would prefer	

 	

“Predicting the movies Netflix members will love is a key
component of our service,” said Neil Hunt, chief product officer

(Netflix)	

!

27

The Netflix dataset	

More than 100 million movie ratings (1-5 stars)	

Nov 11, 1999 and Dec 31, 2005	

• about 480,189 users and n = 17,770 movies	

• 99% of possible ratings are missing	

movie average 5,600 ratings	

user rates average 208 movies	

Training and quiz (test-prize) data

28

Netflix Prize

The loss function: root mean squared error (RMSE)	

!

!

Netflix had its own system, Cinematch, which achieved
0.9514.	

The prize winner had to reach RMSE below 0.8563
(10% improvement)

29

RMSE “
d

1

|Quiz|
ÿ

pu,iqPQuiz

prpu, iq ´ bpu, iqq2

Netflix Prize

For example, suppose that you
want a first-order estimate for
user Joe’s rating of the movie
Titanic. Now, say that the average
rating over all movies, μ, is 3.7
stars. Furthermore, Titanic is
better than an average movie, so
it tends to be rated 0.5 stars
above the average. On the other
hand, Joe is a critical user, who
tends to rate 0.3 stars lower than
the average. Thus, the estimate
for Titanic’s rating by Joe would
be 3.9 stars (3.7 + 0.5 - 0.3).

30

f(u, i) = µ+ bUu + bIi + P uQi

COVER FE ATURE

COMPUTER 32

vector qi ∈ f, and each user u is associ-
ated with a vector pu ∈ f. For a given item
i, the elements of qi measure the extent to
which the item possesses those factors,
positive or negative. For a given user u,
the elements of pu measure the extent of
interest the user has in items that are high
on the corresponding factors, again, posi-
tive or negative. The resulting dot product,
qi

T pu, captures the interaction between user
u and item i—the user’s overall interest in
the item’s characteristics. This approximates
user u’s rating of item i, which is denoted by
rui, leading to the estimate

r̂ui

= qi
T pu. (1)

The major challenge is computing the map-
ping of each item and user to factor vectors
qi, pu ∈ f. After the recommender system
completes this mapping, it can easily esti-
mate the rating a user will give to any item
by using Equation 1.

Such a model is closely related to singular value decom-
position (SVD), a well-established technique for identifying
latent semantic factors in information retrieval. Applying
SVD in the collaborative filtering domain requires factoring
the user-item rating matrix. This often raises difficulties
due to the high portion of missing values caused by sparse-
ness in the user-item ratings matrix. Conventional SVD is
undefined when knowledge about the matrix is incom-
plete. Moreover, carelessly addressing only the relatively
few known entries is highly prone to overfitting.

Earlier systems relied on imputation to fill in missing
ratings and make the rating matrix dense.2 However, im-
putation can be very expensive as it significantly increases
the amount of data. In addition, inaccurate imputation
might distort the data considerably. Hence, more recent
works3-6 suggested modeling directly the observed rat-
ings only, while avoiding overfitting through a regularized
model. To learn the factor vectors (pu and qi), the system
minimizes the regularized squared error on the set of
known ratings:

min
* *,q p (,)u i

(rui − qi
Tpu)

2 + λ(|| qi ||
2 + || pu ||

2) (2)

Here, κ is the set of the (u,i) pairs for which rui is known
(the training set).

The system learns the model by fitting the previously
observed ratings. However, the goal is to generalize those
previous ratings in a way that predicts future, unknown
ratings. Thus, the system should avoid overfitting the
observed data by regularizing the learned parameters,
whose magnitudes are penalized. The constant λ controls

recommendation. These methods have become popular in
recent years by combining good scalability with predictive
accuracy. In addition, they offer much flexibility for model-
ing various real-life situations.

Recommender systems rely on different types of
input data, which are often placed in a matrix with one
dimension representing users and the other dimension
representing items of interest. The most convenient data
is high-quality explicit feedback, which includes explicit
input by users regarding their interest in products. For
example, Netflix collects star ratings for movies, and TiVo
users indicate their preferences for TV shows by pressing
thumbs-up and thumbs-down buttons. We refer to explicit
user feedback as ratings. Usually, explicit feedback com-
prises a sparse matrix, since any single user is likely to
have rated only a small percentage of possible items.

One strength of matrix factorization is that it allows
incorporation of additional information. When explicit
feedback is not available, recommender systems can infer
user preferences using implicit feedback, which indirectly
reflects opinion by observing user behavior, including pur-
chase history, browsing history, search patterns, or even
mouse movements. Implicit feedback usually denotes the
presence or absence of an event, so it is typically repre-
sented by a densely filled matrix.

A BASIC MATRIX FACTORIZATION MODEL
Matrix factorization models map both users and items

to a joint latent factor space of dimensionality f, such that
user-item interactions are modeled as inner products in
that space. Accordingly, each item i is associated with a

Geared
toward
males

Serious

Escapist

The Princess
Diaries

Braveheart

Lethal Weapon

Independence
Day

Ocean’s 11
Sense and
Sensibility

Gus

Dave

Geared
toward

females

Amadeus

The Lion King Dumb and
Dumber

The Color Purple

Figure 2. A simplified illustration of the latent factor approach, which
characterizes both users and movies using two axes—male versus female
and serious versus escapist.

Netflix Prize Winner

Koren and Bell, set an optimization problem that
admits an efficient solution and avoids the problem of
missing values	

!

!

!

!

qi and pu are vectors of k components

8 Yehuda Koren and Robert Bell

is created by also adding in the aforementioned baseline predictors that depend only
on the user or item. Thus, a rating is predicted by the rule

r̂ui = µ+bi+bu+qTi pu . (2)

In order to learn the model parameters (bu,bi, pu and qi) we minimize the regu-
larized squared error

min
b∗,q∗,p∗

∑
(u,i)∈K

(rui−µ−bi−bu−qTi pu)2+λ4(b2i +b2u+∥qi∥2+∥pu∥2) .

The constant λ4, which controls the extent of regularization, is usually determined
by cross validation. Minimization is typically performed by either stochastic gradi-
ent descent or alternating least squares.
Alternating least squares techniques rotate between fixing the pu’s to solve for the

qi’s and fixing the qi’s to solve for the pu’s. Notice that when one of these is taken as
a constant, the optimization problem is quadratic and can be optimally solved; see
[2, 4].
An easy stochastic gradient descent optimization was popularized by Funk [10]

and successfully practiced by many others [17, 23, 24, 28]. The algorithm loops
through all ratings in the training data. For each given rating rui, a prediction (r̂ui)
is made, and the associated prediction error eui

def
= rui− r̂ui is computed. For a given

training case rui, we modify the parameters by moving in the opposite direction of
the gradient, yielding:

• bu ← bu+ γ · (eui−λ4 ·bu)
• bi ← bi+ γ · (eui−λ4 ·bi)
• qi ← qi+ γ · (eui · pu−λ4 ·qi)
• pu ← pu+ γ · (eui ·qi−λ4 · pu)

When evaluating the method on the Netflix data, we used the following values for
the meta parameters: γ = 0.005,λ4 = 0.02. Henceforth, we dub this method “SVD”.
A general remark is in place. One can expect better accuracy by dedicating sepa-

rate learning rates (γ) and regularization (λ) to each type of learned parameter. Thus,
for example, it is advised to employ distinct learning rates to user biases, item biases
and the factors themselves. A good, intensive use of such a strategy is described in
Takács et al. [29]. When producing exemplary results for this chapter, we did not
use such a strategy consistently, and in particular many of the given constants are
not fully tuned.

3.2 SVD++

Prediction accuracy is improved by considering also implicit feedback, which pro-
vides an additional indication of user preferences. This is especially helpful for those

8 Yehuda Koren and Robert Bell

is created by also adding in the aforementioned baseline predictors that depend only
on the user or item. Thus, a rating is predicted by the rule

r̂ui = µ+bi+bu+qTi pu . (2)

In order to learn the model parameters (bu,bi, pu and qi) we minimize the regu-
larized squared error

min
b∗,q∗,p∗

∑
(u,i)∈K

(rui−µ−bi−bu−qTi pu)2+λ4(b2i +b2u+∥qi∥2+∥pu∥2) .

The constant λ4, which controls the extent of regularization, is usually determined
by cross validation. Minimization is typically performed by either stochastic gradi-
ent descent or alternating least squares.
Alternating least squares techniques rotate between fixing the pu’s to solve for the

qi’s and fixing the qi’s to solve for the pu’s. Notice that when one of these is taken as
a constant, the optimization problem is quadratic and can be optimally solved; see
[2, 4].
An easy stochastic gradient descent optimization was popularized by Funk [10]

and successfully practiced by many others [17, 23, 24, 28]. The algorithm loops
through all ratings in the training data. For each given rating rui, a prediction (r̂ui)
is made, and the associated prediction error eui

def
= rui− r̂ui is computed. For a given

training case rui, we modify the parameters by moving in the opposite direction of
the gradient, yielding:

• bu ← bu+ γ · (eui−λ4 ·bu)
• bi ← bi+ γ · (eui−λ4 ·bi)
• qi ← qi+ γ · (eui · pu−λ4 ·qi)
• pu ← pu+ γ · (eui ·qi−λ4 · pu)

When evaluating the method on the Netflix data, we used the following values for
the meta parameters: γ = 0.005,λ4 = 0.02. Henceforth, we dub this method “SVD”.
A general remark is in place. One can expect better accuracy by dedicating sepa-

rate learning rates (γ) and regularization (λ) to each type of learned parameter. Thus,
for example, it is advised to employ distinct learning rates to user biases, item biases
and the factors themselves. A good, intensive use of such a strategy is described in
Takács et al. [29]. When producing exemplary results for this chapter, we did not
use such a strategy consistently, and in particular many of the given constants are
not fully tuned.

3.2 SVD++

Prediction accuracy is improved by considering also implicit feedback, which pro-
vides an additional indication of user preferences. This is especially helpful for those

Netflix Prize Winner

31

News Recommendations

• The aim is to keep readers online with
personalized recommendations to read next	

• There are already a number of implicit or
explicit recommendations in digital
newspapers	

• A news recommender should suggest news
of interest for readers that are not explicitly
linked by other recommenders

32

News Recommendations

• Learning task: find a function to map from
trajectories of already read news to news to
be read in the future. It is multilabel
classification task 	

!

!

• Both sets of news are going to be embedded
in a common Euclidean space

33

Past news Future news

News Recommendations

• Learning task	

• represent reading trajectories	

• represent news	

• in such a way that interesting news for

readers are near to their trajectories	

!

!f(r, i) = �||�
trajectory

(r)� �
art

(i)||2

= 2(Wr)TV
i

� (Wr)T (Wr)� (V
i

)TV
i

34

News Recommendations

!
next (Vi)

trajectory (Wr)

35

News Recommendations
!

Optimize ranking loss:	

WARP (Weighted Approximately Ranked Pairwise)	

!

!

!

!

where p is a positive example and n a negative one

WARP
error

=

X

j

L(↵)max(0, 1� f(r
j

, p) + f(r
j

, n))

36

News Recommendations

37

08:00 08:30 09:00

09:30 10:00 10:30

Our Approach
Baseline

0.5

0.6

0.7

0.8

0.9

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

MOOCs assessment

• MOOCs are expensive:	

• $ 50,000 filming	

• $ 50,000 hosting	

• Intelligent services (answering questions, evaluation of

assignments)	

• Prestigious universities are interested because:	

• Open: Kind of ad to attract students for regular courses	

• Licensing courses: for Universities without specialist in

high level courses. These universities provide TA
(cheaper than Professors that are not really available)

38

MOOCs: peer evaluation

• Assignments are difficult to be evaluated by
computers. Open-responses. Essay. Graphical
illustrations. Pictures.	

• Metaphor of Conference papers	

• Students submit assignments as papers.	

• Students will serve as reviewers	

• Students receive a rubric (a set of rules to uniform
grades)

39

• Someone or a simple software will assign
assignments (papers) to other students (reviewers). 	

!

• Students will be advised that they are going to be
evaluated as authors and as reviewers.

MOOCs: peer evaluation

40

Each grader g receives a subset of assignments and
provides a grade	

!

!

Embedding of graders and assignments	

!

!

MOOCs: peer evaluation

g(i) 2 [0, 10]

8g 2 G, g(i) > g(j)) [g, i, j] 2 PJ

41

�gr(g) : G ! Rk, g 7! Wg,

�a(i) : A ! Rk, i 7! V i.

The ranking will be given by the average of learned
grades	

!

!

!

This rank should be as coherent as possible with the
ranks of graders	

MOOCs: peer evaluation

42

f(G, i) = � 1

|G|

������

������

X

g2G
�gr(g)� �a(i)

������

������

2

Define error in order to maximize the margin	

!

!

regularization	

!

Then we need to optimize

MOOCs: peer evaluation

r(W ,V) =
��W

��2
F
+

��V
��2
F

argmin
W ,V

(err(W ,V) + ⌫r(W ,V))

43

err(W ,V) =

X

[g,i,j]2PJ

max

⇣
0, 1� f(G, i) + f(G, j)

⌘

44

a1 a2 a3 a4 a5

g1 6 8 4

g2 10 9 10

g3 4 6 3

g4 8 5 5 8

MOOCs: peer evaluation

45

a1 a2 a3 a4 a5

g1 ★ 6 8 4 ★

g2 10 ★ 9 ★ 10

g3 ★ 4 6 3 ★

g4 8 5 ★ 5 8

MOOCs: peer evaluation

46

a1 a2 a3 a4 a5

g1 ★ ★ ★ ★ ★

g2 ★ ★ ★ ★ ★

g3 ★ ★ ★ ★ ★

g4 ★ ★ ★ ★ ★

MOOCs: peer evaluation

47

a1 a2 a3 a4 a5

g1 ★ ★ ★ ★ ★

g2 ★ ★ ★ ★ ★

g3 ★ ★ ★ ★ ★

g4 ★ ★ ★ ★ ★

★ ★ ★ ★ ★

MOOCs: peer evaluation

• The output of the learning process is a ranking of
the assignments	

• Calibration by Professor	

• Some of the assignments will be evaluated by
the Professor to find a way to convert ranking
into assessments

MOOCs: peer evaluation

48

Order assignments by	

!

!

!

!

!

MOOCs: peer evaluation

49

f(G, i)

Graded by Professor to calibrate the ranking

The final grade of a student: weighted sum of evaluation
as author (calibrated percentile) and as reviewer (AUC) 	

!

!

!

MOOCs: peer evaluation

50

grade(i) = 0.7 · calibrated(f(G, i)) + 0.3 ·AUC(f, gi)

MOOCs: peer evaluation

51

Table 1: Datasets description

of assignment 208
of graders 188
of evaluations 1882
evaluations per grader 10.01 ± 0.77
evaluations per assignment 9.05 ± 1.71

Table 2: Description of grades in each dataset

Average Q1 Global

grade 6.34 ± 3.13 5.68 ± 2.63
range per assignment 7.22 ± 2.43 4.82 ± 1.93
range per grader 7.02 ± 2.65 6.81 ± 1.74

– adds some new preferences suggested by the so-
called Gaussian graders,

– uses a SGD to find a couple of matrices, W and
V .

• The evaluation of the performance is computed with
the whole set used for training, the learning task DPJ .

• The performance measure is the AUC (Eq. 14).

• The ranking computed by (Eq. 8) can be calibrated
to transform percentiles into valid grades. This can
be done using a table of equivalences or using grades
provided by the sta↵ for some assignments to make an
interpolation.

5. EXPERIMENTAL RESULTS
In this section we report the results obtained with the data-
sets described above. These data gathers assignments of 208
students from our three universities, 188 of these students
participated as graders (see Table 1) with a total of 1882
grades from 0 to 10. Each student received an average of
10 assignments to evaluate, and each assignment received in
average 9 grades.

In these experiments we considered 2 datasets. The first one
includes the grades given to the first question, we call it Q1.
The second dataset was formed with the global assessments
of the three questions, we call it Global. Table 2 shows the
average and typical deviation of grades for each dataset.
Additionally, this table displays the average range of grades
received by the assignments and given by graders. Let us
highlight the extension of the range of grades received by
the assignments; this is an indication of the di�culty of the
peer grading task. Figure 1 depicts the histograms of grades
received by the assignments for each dataset. Notice that the
deviations in the case of Q1 are greater than in the Global
dataset.

We built the sets of preference judgments as was explained
in Section 3. Then, the SGD was applied using in all cases
k = 10, and a learning rate defined in terms of the iteration
it by

� 1
(�s · it) + 1

.

Table 3: Comparative using all grades available

Dataset Model Avg.

Q1 0.7656 0.7532
Global 0.8451 0.8357

The parameters used were the results of a search of the best
scores in

�s 2 {10e : e = �7, . . . , 0}
⌫ 2 {0} [{10e : e = �4, . . . ,�1}.

To evaluate the quality of the results, we used the AUC de-
fined in (Eq. 14). We compared the scores obtained with
the average of grades received by each assignment. Table 3
shows the scores of each method in each dataset using all
grades available. Notice that in all cases, our method out-
performs the baseline.

Next we check the sensibility of the method proposed in this
paper with respect to the number of assignment supplied
to student-graders to evaluate. For this purpose, we built
datasets sampling the original data with di↵erent number of
assignments per grader: from 5 to 11. We did the same for
the dataset about Q1 and for the dataset about the Global
grade.

The results are shown in Figure 2. In all cases our method
achieves better results than the baseline average. Let us
observe that the scores obtained in Q1 are clearly worse
than those obtain in the Global case. The reason is that in
Q1, graders found di�cult to assess the assignments. Notice
that the mean range of grades per assignment in Q1 is 7.22,
while in the Global case was only 4.82; see Table 2. The
performance of any grading method depends clearly on these
amounts.

Additionally, we appreciate an improvement of the scores
obtained with less assignments per grader. This is obvious
in Q1, and only a slight improvement in the Global case.
The reason is that the smaller number of grader’s prefer-
ences implies a smaller number of contradictions. Anyway,
more research has to be done in order to decide if this fact
means that the ideal ground truth is nearer to the model
learned with 5 assignments than to the model obtained with
all grades.

Finally, we studied the di↵erences between the rankings ob-
tained with our method and those obtained with the base-
line. The scatter plots of Figure 3 represent the position
in the ranking obtained using our method with 5 or all as-
signments (a maximum of 11) per grader (horizontal axis)
against the position achieved in the baseline (vertical axis).
In both dataset, we observe that both methods achieve more
similar results when we have 11 assignments per grader than
when we only have 5. In any case, the rankings are not the
same, of course.

6. CONCLUSIONS
We have presented a factorization method to implement peer
assessment. Our approach seeks a trade-o↵ between car-

52

MOOCs: peer evaluation

of
 a

ss
ig

nm
en

ts

0

10

20

30

40

50

60

average grade per assignment
0 1 2 3 4 5 6 7 8 9 10

Global grade

of

 a
ss

ig
nm

en
ts

0

10

20

30

40

50

60

70

80

90

100

grade deviation per assignment
0 1 2 3 4 5

Global grade

of
 a

ss
ig

nm
en

ts

0

10

20

30

40

50

60

average grade per assignment
0 1 2 3 4 5 6 7 8 9 10

Question 1

of

 a
ss

ig
nm

en
ts

0

10

20

30

40

50

60

70

80

90

100

grade deviation per assignment
0 1 2 3 4 5

Question 1

Model for global grade
Average for global grade
Model for question 1
Average for question 1AU

C

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.80

0.81

0.82

0.83

0.84

0.85

0.86

0.87

evaluations
5 6 7 8 9 10 11

53

MOOCs: peer evaluation

Take-home messages

• Learning task	

• Split variables. Interaction. 	

• Classification, regression, ranking

54

Take-home messages

• Procedure 	

• Set embedding equations	

• Find optimal matrices for loss
function and regularization	

• Use your favorite optimizer (SGD,
proximal)

55

Take-home messages

• Advantages	

• Clean, principled	

• Noise-tolerant	

• Fast. Scalable to Big Data

56

Take-home messages
• Bibliography	

• Neal Parikh (Department of Computer
Science Stanford University),Stephen Boyd
(Department of Electrical Engineering
Stanford University): Proximal Algorithms.
Foundations and Trends⃝

 in Optimization Vol. 1,
No. 3 (2013) 123–231.	

• Kaare Brandt Petersen, Michael Syskind
Pedersen: The Matrix Cookbook. Technical
University of Denmark, 2012

57

Variables latentes para
aprender a ordenar

Antonio Bahamonde.
Universidad de Oviedo. AEPIA

A Coruña, Septiembre, 2014

